Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Abstract view

On the Norm of the Beurling-Ahlfors Operator in Several Dimensions

Open Access article
 Printed: Mar 2011
  • Tuomas P. Hytönen,
    Department of Mathematics and Statistics, University of Helsinki, FI-00014 Helsinki, Finland
Format:   HTML   LaTeX   MathJax   PDF  


The generalized Beurling-Ahlfors operator $S$ on $L^p(\mathbb{R}^n;\Lambda)$, where $\Lambda:=\Lambda(\mathbb{R}^n)$ is the exterior algebra with its natural Hilbert space norm, satisfies the estimate $$\|S\|_{\mathcal{L}(L^p(\mathbb{R}^n;\Lambda))}\leq(n/2+1)(p^*-1),\quad p^*:=\max\{p,p'\}$$ This improves on earlier results in all dimensions $n\geq 3$. The proof is based on the heat extension and relies at the bottom on Burkholder's sharp inequality for martingale transforms.
MSC Classifications: 42B20, 60G46 show english descriptions Singular and oscillatory integrals (Calderon-Zygmund, etc.)
Martingales and classical analysis
42B20 - Singular and oscillatory integrals (Calderon-Zygmund, etc.)
60G46 - Martingales and classical analysis

© Canadian Mathematical Society, 2018 :