Abstract view
Dynamical Zeta Function for Several Strictly Convex Obstacles


Published:20080301
Printed: Mar 2008
Abstract
The behavior of the dynamical zeta function $Z_D(s)$ related to
several strictly convex disjoint obstacles is similar to that of the
inverse $Q(s) = \frac{1}{\zeta(s)}$ of the Riemann zeta function
$\zeta(s)$. Let $\Pi(s)$ be the series obtained from $Z_D(s)$ summing
only over primitive periodic rays. In this paper we examine the
analytic singularities of $Z_D(s)$ and $\Pi(s)$ close to the line $\Re
s = s_2$, where $s_2$ is the abscissa of absolute convergence of the
series obtained by the second iterations of the primitive periodic
rays. We show that at least one of the functions $Z_D(s), \Pi(s)$
has a singularity at $s = s_2$.