Abstract view
Discreteness For the Set of Complex Structures On a Real Variety


Published:20030901
Printed: Sep 2003
Abstract
Let $X$, $Y$ be reduced and irreducible compact complex spaces and
$S$ the set of all isomorphism classes of reduced and irreducible
compact complex spaces $W$ such that $X\times Y \cong X\times W$.
Here we prove that $S$ is at most countable. We apply this result
to show that for every reduced and irreducible compact complex
space $X$ the set $S(X)$ of all complex reduced compact complex
spaces $W$ with $X\times X^\sigma \cong W\times W^\sigma$ (where
$A^\sigma$ denotes the complex conjugate of any variety $A$) is at
most countable.