Canadian Mathematical Society
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Abstract view

Cercles de remplissage for the Riemann Zeta Function

Open Access article
 Printed: Mar 2003
  • P. M. Gauthier
Format:   HTML   LaTeX   MathJax   PDF   PostScript  


The celebrated theorem of Picard asserts that each non-constant entire function assumes every value infinitely often, with at most one exception. The Riemann zeta function has this Picard behaviour in a sequence of discs lying in the critical band and whose diameters tend to zero. According to the Riemann hypothesis, the value zero would be this (unique) exceptional value.
Keywords: cercles de remplissage, Riemann zeta function cercles de remplissage, Riemann zeta function
MSC Classifications: 30 show english descriptions unknown classification 30 30 - unknown classification 30

© Canadian Mathematical Society, 2017 :