Abstract view
Instabilité de vecteurs propres d'opérateurs linéaires


Published:19990301
Printed: Mar 1999
Abstract
We consider some geometric properties of eigenvectors of linear
operators on infinite dimensional Hilbert space. It is proved that
the property of a family of vectors $(x_n)$ to be eigenvectors
$Tx_n= \lambda_n x_n$ ($\lambda_n \noteq \lambda_k$ for $n\noteq k$)
of a bounded operator $T$ (admissibility property) is very instable
with respect to additive and linear perturbations. For instance,
(1)~for the sequence $(x_n+\epsilon_n v_n)_{n\geq k(\epsilon)}$ to
be admissible for every admissible $(x_n)$ and for a suitable
choice of small numbers $\epsilon_n\noteq 0$ it is necessary and
sufficient that the perturbation sequence be eventually scalar:
there exist $\gamma_n\in \C$ such that $v_n= \gamma_n v_{k}$ for
$n\geq k$ (Theorem~2); (2)~for a bounded operator $A$ to transform
admissible families $(x_n)$ into admissible families $(Ax_n)$ it is
necessary and sufficient that $A$ be left invertible (Theorem~4).