Abstract view
The Weak Ideal Property and Topological Dimension Zero


Published:20170719
Printed: Dec 2017
Cornel Pasnicu,
Department of Mathematics, The University of Texas at San Antonio, San Antonio TX 78249, USA
N. Christopher Phillips,
Department of Mathematics, University of Oregon, Eugene OR 974031222, USA
Abstract
Following up on previous work,
we prove a number of results for C*algebras
with the weak ideal property
or topological dimension zero,
and some results for C*algebras with related properties.
Some of the more important results include:
$\bullet$
The weak ideal property
implies topological dimension zero.
$\bullet$
For a separable C*algebra~$A$,
topological dimension zero is equivalent to
${\operatorname{RR}} ({\mathcal{O}}_2 \otimes A) = 0$,
to $D \otimes A$ having the ideal property
for some (or any) Kirchberg algebra~$D$,
and to $A$ being residually hereditarily in
the class of all C*algebras $B$ such that
${\mathcal{O}}_{\infty} \otimes B$
contains a nonzero projection.
$\bullet$
Extending the known result for ${\mathbb{Z}}_2$,
the classes of C*algebras
with residual (SP),
which are residually hereditarily (properly) infinite,
or which are purely infinite and have the ideal property,
are closed under crossed products by arbitrary actions
of abelian $2$groups.
$\bullet$
If $A$ and $B$ are separable,
one of them is exact,
$A$ has the ideal property,
and $B$ has the weak ideal property,
then $A \otimes_{\mathrm{min}} B$ has the weak ideal property.
$\bullet$
If $X$ is a totally disconnected locally compact Hausdorff space
and $A$ is a $C_0 (X)$algebra
all of whose fibers have one of the weak ideal property,
topological dimension zero,
residual (SP),
or the combination of pure infiniteness and the ideal property,
then $A$ also has the corresponding property
(for topological dimension zero, provided $A$ is separable).
$\bullet$
Topological dimension zero,
the weak ideal property,
and the ideal property
are all equivalent
for a substantial class of separable C*algebras including
all separable locally AH~algebras.
$\bullet$
The weak ideal property does not imply the ideal property
for separable $Z$stable C*algebras.
We give other related results,
as well as counterexamples to several other statements
one might hope for.