Abstract view
Multiplication Formulas and Canonical Bases for Quantum Affine $gl_n$


Published:20170816
Printed: Aug 2018
Jie Du,
School of Mathematics and Statistics, University of New South Wales, Sydney 2052, Australia
Zhonghua Zhao,
School of Science, Beijing University of Chemical Technology, Beijing 100029, China
Abstract
We will give a representationtheoretic proof for the multiplication
formula
in the RingelHall algebra
$\mathfrak{H}_\Delta(n)$ of a cyclic quiver $\Delta(n)$. As a first
application, we see immediately the existence of Hall polynomials
for cyclic quivers, a fact established
by J. Y. Guo and C. M. Ringel,
and derive a recursive formula
to compute them.
We will further use the formula and the construction of a certain
monomial base for $\mathfrak{H}_\Delta(n)$ given
by Deng, Du, and Xiao
together with the double RingelHall algebra realisation of
the quantum loop algebra $\mathbf{U}_v(\widehat{\mathfrak{g}\mathfrak{l}}_n)$
given by
Deng, Du, and Fu
to develop some algorithms and to compute the canonical basis
for $\mathbf{U}_v^+(\widehat{\mathfrak{g}\mathfrak{l}}_n)$. As examples,
we will show explicitly the part of the canonical basis
associated with modules of Lowey length at most $2$ for the quantum
group $\mathbf{U}_v(\widehat{\mathfrak{g}\mathfrak{l}}_2)$.