CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

Anisotropic Hardy-Lorentz Spaces with Variable Exponents

  Published:2017-05-19
 Printed: Dec 2017
  • Víctor Almeida,
    Departamento de Análisis Matemático, Universidad de la Laguna,, Campus de Anchieta, Avda. Astrofísico Francisco Sánchez, s/n,, 38271, La Laguna (Sta. Cruz de Tenerife), Spain
  • Jorge J. Betancor,
    Departamento de Análisis Matemático, Universidad de la Laguna,, Campus de Anchieta, Avda. Astrofísico Francisco Sánchez, s/n,, 38271, La Laguna (Sta. Cruz de Tenerife), Spain
  • Lourdes Rodríguez-Mesa,
    Departamento de Análisis Matemático, Universidad de la Laguna,, Campus de Anchieta, Avda. Astrofísico Francisco Sánchez, s/n,, 38271, La Laguna (Sta. Cruz de Tenerife), Spain
Format:   LaTeX   MathJax   PDF  

Abstract

In this paper we introduce Hardy-Lorentz spaces with variable exponents associated to dilations in ${\mathbb R}^n$. We establish maximal characterizations and atomic decompositions for our variable exponent anisotropic Hardy-Lorentz spaces.
Keywords: variable exponent Hardy space, Hardy-Lorentz space, anisotropic Hardy space, maximal function, atomic decomposition variable exponent Hardy space, Hardy-Lorentz space, anisotropic Hardy space, maximal function, atomic decomposition
MSC Classifications: 42B30, 42B25, 42B35 show english descriptions $H^p$-spaces
Maximal functions, Littlewood-Paley theory
Function spaces arising in harmonic analysis
42B30 - $H^p$-spaces
42B25 - Maximal functions, Littlewood-Paley theory
42B35 - Function spaces arising in harmonic analysis
 

© Canadian Mathematical Society, 2017 : https://cms.math.ca/