Abstract view
$L^q$ Norms of Fekete and Related Polynomials


Published:20160628
Printed: Aug 2017
Christian Günther,
Department of Mathematics, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
KaiUwe Schmidt,
Department of Mathematics, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
Abstract
A Littlewood polynomial is a polynomial in $\mathbb{C}[z]$ having all
of its coefficients in $\{1,1\}$. There are various old unsolved
problems, mostly due to Littlewood and Erdős, that ask for
Littlewood polynomials that provide a good approximation to a
function that is constant on the complex unit circle, and in
particular have small $L^q$ norm on the complex unit circle.
We consider the Fekete polynomials
\[
f_p(z)=\sum_{j=1}^{p1}(j\,\,p)\,z^j,
\]
where $p$ is an odd prime and $(\,\cdot\,\,p)$ is the Legendre
symbol (so that $z^{1}f_p(z)$ is a Littlewood polynomial). We
give explicit and recursive formulas for the limit of the ratio
of $L^q$ and $L^2$ norm of $f_p$ when $q$ is an even positive
integer and $p\to\infty$. To our knowledge, these are the first
results that give these limiting values for specific sequences
of nontrivial Littlewood polynomials and infinitely many $q$.
Similar results are given for polynomials obtained by cyclically
permuting the coefficients of Fekete polynomials and for Littlewood
polynomials whose coefficients are obtained from additive characters
of finite fields. These results vastly generalise earlier results
on the $L^4$ norm of these polynomials.