CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

La Variante infinitésimale de la formule des traces de Jacquet-Rallis pour les groupes unitaires

  Published:2016-08-30
 Printed: Dec 2016
  • Michał Zydor,
    Université Paris Diderot, Institut de Mathématiques de Jussieu-Paris Rive Gauche, UMR7586, Bâtiment Sophie Germain, Case 7012, 75205 PARIS Cedex 13, France
Format:   LaTeX   MathJax   PDF  

Abstract

We establish an infinitesimal version of the Jacquet-Rallis trace formula for unitary groups. Our formula is obtained by integrating a truncated kernel à la Arthur. It has a geometric side which is a sum of distributions $J_{\mathfrak{o}}$ indexed by classes of elements of the Lie algebra of $U(n+1)$ stable by $U(n)$-conjugation as well as the "spectral side" consisting of the Fourier transforms of the aforementioned distributions. We prove that the distributions $J_{\mathfrak{o}}$ are invariant and depend only on the choice of the Haar measure on $U(n)(\mathbb{A})$. For regular semi-simple classes $\mathfrak{o}$, $J_{\mathfrak{o}}$ is a relative orbital integral of Jacquet-Rallis. For classes $\mathfrak{o}$ called relatively regular semi-simple, we express $J_{\mathfrak{o}}$ in terms of relative orbital integrals regularised by means of zêta functions.
Keywords: formule des traces relative formule des traces relative
MSC Classifications: 11F70, 11F72 show english descriptions Representation-theoretic methods; automorphic representations over local and global fields
Spectral theory; Selberg trace formula
11F70 - Representation-theoretic methods; automorphic representations over local and global fields
11F72 - Spectral theory; Selberg trace formula
 

© Canadian Mathematical Society, 2017 : https://cms.math.ca/