Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-16T04:01:42.519Z Has data issue: false hasContentIssue false

A Free Product Formula for the Sofic Dimension

Published online by Cambridge University Press:  20 November 2018

Robert Graham
Affiliation:
Department of Mathematics and Statistics, McGill University, Montréal, QC H3A 0B9. e-mail: robert.graham2@mail.mcgill.ca, pichot@math.mcgill.ca
Mikael Pichot
Affiliation:
Department of Mathematics and Statistics, McGill University, Montréal, QC H3A 0B9. e-mail: robert.graham2@mail.mcgill.ca, pichot@math.mcgill.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is proved that if $G\,=\,{{G}_{1}}\,{{*}_{{{G}_{3}}}}\,{{G}_{2}}$ is free product of probability measure preserving $s$–regular ergodic discrete groupoids amalgamated over an amenable subgroupoid ${{G}_{3}}$, then the sofic dimension $s(G)$ satisfies the equality

$$s(G)=\mathfrak{h}(G_{1}^{0})s({{G}_{1}})+\mathfrak{h}(G_{2}^{0})s\left( {{G}_{2}} \right)-\,\mathfrak{h}(G_{3}^{0})s({{G}_{3}}),$$

where $\mathfrak{h}$ is the normalized Haar measure on $G$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2015

References

[BCG] Biane, P., Capitaine, M., and Guionnet, A., Large deviation bounds for matrix Brownian motion. Invent. Math. 152(2003), no. 2, 433459.http://dx.doi.org/10.1007/s00222-002-0281-4 Google Scholar
[Bow] Bowen, L., Measure conjugacy invariants for actions of countable sofic groups. Amer. Math. Soc. 23(2010), no. 1, 217245. http://dx.doi.org/10.1090/S0894-0347-09-00637-7 Google Scholar
[Bow2] Bowen, L., Entropy theory for sofic groupoids. I. The foundations. http://arxiv:1210.1992 Google Scholar
[BDJ] Brown, N. P., Dykema, K. J., and Jung, K., Free entropy dimension in amalgamated free products. Proc. Lond. Math. Soc. 97(2008), no. 2, 339367. http://dx.doi.org/10.1112/plms/pdm054 Google Scholar
[Dye] Dye, H. A., On groups of measure preserving transformations. I. Amer. J. Math. 81(1959), no. 1, 119159. http://dx.doi.org/10.2307/2372852 Google Scholar
[DKP1] Dykema, K., Kerr, D., and Pichot, M., Orbit equivalence and sofic approximation. arxiv:1102.2556 Google Scholar
[DKP2] Dykema, K., Kerr, D., and Pichot, M., Sofic dimension for discrete measure groupoids. http://arxiv:1111.2842 Google Scholar
[EL] Elek, G. and Lippner, G., Sofic equivalence relations. J. Funct. Anal. 258(2010), no. 5, 16921708.http://dx.doi.org/10.1016/j.jfa.2009.10.013 Google Scholar
[FSZ] Feldman, J., Sutherland, C. E., and Zimmer, R. J., Subrelations of ergodic equivalence relations. Ergodic Theory Dynam. Systems 9(1989), no. 2, 239269.http://dx.doi.org/10.1017/S0143385700004958 Google Scholar
[Gab] Gaboriau, D., Coût des relations d’ équivalence et des groupes. Invent. Math. 139(2000), no. 1, 4198. http://dx.doi.org/10.1007/s002229900019 Google Scholar
[GL] Gaboriau, D. and Lyons, R., A measurable–group–theoretic solution to von Neumann's problem. Invent. Math. 177(2009), no. 3, 533540. http://dx.doi.org/10.1007/s00222-009-0187-5 Google Scholar
[Jun1] Jung, K., A free entropy dimension lemma. Pacific J. Math. 211(2003), no. 2, 265271.http://dx.doi.org/10.2140/pjm.2003.211.265 Google Scholar
[Jun2] Jung, K., The free entropy dimension of hyperfinite von Neumann algebras. Trans. Amer.Math. Soc. 355(2003), no. 12, 50535089. http://dx.doi.org/10.1090/S0002-9947-03-03286-0 Google Scholar
[MS] Mineyev, I. and Shlyakhtenko, D., Non–microstates free entropy dimension for groups. Geom. Funct. Anal. 15(2005), no. 2, 476490. http://dx.doi.org/10.1007/s00039-005-0513-z Google Scholar
[OW] Ornstein, D. S. and Weiss., B. Entropy and isomorphism theorems for actions of amenable groups. Analyse Math. 48(1987), 1141. http://dx.doi.org/10.1007/BF02790325 Google Scholar
[Oz] Ozawa, N., Hyperlinearity, sofic groups and applications to group theory. Notes from a 2009 talk. http://people.math.jussieu.fr/_pisier/taka.talk.pdf Google Scholar
[Pe] Pestov, V., Hyperlinear and sofic groups: a brief guide. Bull. Symbolic Logic 14(2008), no. 4, 449480. http://dx.doi.org/10.2178/bsl/1231081461 Google Scholar
[Ram] Ramsay, A., Virtual groups and group actions. Advances in Math. 322(1971), 253322.http://dx.doi.org/10.1016/0001-8708(71)90018-1 Google Scholar
[Shl] Shlyakhtenko, D., Microstates free entropy and cost of equivalence relations. Duke Math. J. 118(2003), no. 3, 375425. http://dx.doi.org/10.1215/S0012-7094-03-11831-1 Google Scholar
[Voi91] Voiculescu, D., Limit laws for random matrices and free products. Invent. Math. 104(1991), no. 1, 201220. http://dx.doi.org/10.1007/BF01245072 Google Scholar
[Voi96] Voiculescu, D., The analogues of entropy and of Fisher's information measure in free probability theory III. The absence of Cartan subalgebras. Geom. Funct. Anal. 6(1996), no. 1, 172199.http://dx.doi.org/10.1007/BF02246772 Google Scholar
[Voi98] Voiculescu, D., A strengthened asymptotic freeness result for random matrices with applications to free entropy. Internat. Math. Res. Notices 1998, no. 1, 4163.Google Scholar