Abstract view
The Central Limit Theorem for Subsequences in Probabilistic Number Theory


Published:20111223
Printed: Dec 2012
Christoph Aistleitner,
Graz University of Technology, Institute of Mathematics A, Steyrergasse 30, 8010 Graz, Austria
Christian Elsholtz,
Graz University of Technology, Institute of Mathematics A, Steyrergasse 30, 8010 Graz, Austria
Abstract
Let $(n_k)_{k \geq 1}$ be an increasing sequence of positive integers, and let $f(x)$ be a real function satisfying
\begin{equation}
\tag{1}
f(x+1)=f(x), \qquad \int_0^1 f(x) ~dx=0,\qquad
\operatorname{Var_{[0,1]}}
f \lt \infty.
\end{equation}
If $\lim_{k \to \infty} \frac{n_{k+1}}{n_k} = \infty$
the distribution of
\begin{equation}
\tag{2}
\frac{\sum_{k=1}^N f(n_k x)}{\sqrt{N}}
\end{equation}
converges to a Gaussian distribution. In the case
$$
1 \lt \liminf_{k \to \infty} \frac{n_{k+1}}{n_k}, \qquad \limsup_{k \to \infty} \frac{n_{k+1}}{n_k} \lt \infty
$$
there is a complex interplay between the analytic properties of the
function $f$, the numbertheoretic properties of $(n_k)_{k \geq 1}$,
and the limit distribution of (2).
In this paper we prove that any sequence $(n_k)_{k \geq 1}$ satisfying
$\limsup_{k \to \infty} \frac{n_{k+1}}{n_k} = 1$ contains a nontrivial
subsequence $(m_k)_{k \geq 1}$ such that for any function satisfying
(1) the distribution of
$$
\frac{\sum_{k=1}^N f(m_k x)}{\sqrt{N}}
$$
converges to a Gaussian distribution. This result is best possible: for any
$\varepsilon\gt 0$ there exists a sequence $(n_k)_{k \geq 1}$ satisfying $\limsup_{k \to
\infty} \frac{n_{k+1}}{n_k} \leq 1 + \varepsilon$ such that for every nontrivial
subsequence $(m_k)_{k \geq 1}$ of $(n_k)_{k \geq 1}$ the distribution
of (2) does not converge to a Gaussian distribution for some $f$.
Our result can be viewed as a Ramsey type result: a sufficiently dense
increasing integer sequence contains a subsequence having a certain
requested numbertheoretic property.