Abstract view
Characterizing Complete Erd\H os Space


Published:20090201
Printed: Feb 2009
Jan J. Dijkstra
Jan van Mill
Abstract
The space now known as {\em complete Erd\H os
space\/} $\cerdos$ was introduced by Paul Erd\H os in 1940 as the
closed subspace of the Hilbert space $\ell^2$ consisting of all
vectors such that every coordinate is in the convergent sequence
$\{0\}\cup\{1/n:n\in\N\}$. In a solution to a problem posed by Lex G.
Oversteegen we present simple and useful topological
characterizations of $\cerdos$.
As an application we determine the class
of factors of $\cerdos$. In another application we determine
precisely which of the spaces that can be constructed in the Banach
spaces $\ell^p$ according to the `Erd\H os method' are homeomorphic
to $\cerdos$. A novel application states that if $I$ is a
Polishable $F_\sigma$ideal on $\omega$, then $I$ with the Polish
topology is homeomorphic to either $\Z$, the Cantor set $2^\omega$,
$\Z\times2^\omega$, or $\cerdos$. This last result answers a
question that was asked
by Stevo Todor{\v{c}}evi{\'c}.
Keywords: 
Complete Erd\H os space, Lelek fan, almost zerodimensional, nowhere zerodimensional, Polishable ideals, submeasures on $\omega$, $\R$trees, linefree groups in Banach spaces
Complete Erd\H os space, Lelek fan, almost zerodimensional, nowhere zerodimensional, Polishable ideals, submeasures on $\omega$, $\R$trees, linefree groups in Banach spaces
