Abstract view
Endomorphism Rings of Finite Global Dimension


Published:20070401
Printed: Apr 2007
Abstract
For a commutative local ring $R$, consider (noncommutative)
$R$algebras $\Lambda$ of the form $\Lambda = \operatorname{End}_R(M)$
where $M$ is a reflexive $R$module with nonzero free direct summand.
Such algebras $\Lambda$ of finite global dimension can be viewed as
potential substitutes for, or analogues of, a resolution of
singularities of $\operatorname{Spec} R$. For example, Van den Bergh
has shown that a threedimensional Gorenstein normal
$\mathbb{C}$algebra with isolated terminal singularities has a
crepant resolution of singularities if and only if it has such an
algebra $\Lambda$ with finite global dimension and which is maximal
CohenMacaulay over $R$ (a ``noncommutative crepant resolution of
singularities''). We produce algebras
$\Lambda=\operatorname{End}_R(M)$ having finite global dimension in
two contexts: when $R$ is a reduced onedimensional complete local
ring, or when $R$ is a CohenMacaulay local ring of finite
CohenMacaulay type. If in the latter case $R$ is Gorenstein, then
the construction gives a noncommutative crepant resolution of
singularities in the sense of Van den Bergh.
MSC Classifications: 
16G50, 16G60, 16E99 show english descriptions
CohenMacaulay modules Representation type (finite, tame, wild, etc.) None of the above, but in this section
16G50  CohenMacaulay modules 16G60  Representation type (finite, tame, wild, etc.) 16E99  None of the above, but in this section
