Abstract view
Endomorphism Algebras of Kronecker Modules Regulated by Quadratic Function Fields


Published:20070201
Printed: Feb 2007
Abstract
Purely simple Kronecker modules ${\mathcal M}$, built from an algebraically closed field $K$,
arise from a triplet $(m,h,\alpha)$ where $m$ is a positive integer,
$h\colon\ktil\ar \{\infty,0,1,2,3,\dots\}$ is a height function, and
$\alpha$ is a $K$linear functional on the space $\krx$ of rational
functions in one variable $X$. Every pair $(h,\alpha)$ comes with a
polynomial $f$ in $K(X)[Y]$ called the regulator. When the module
${\mathcal M}$ admits nontrivial endomorphisms, $f$ must be linear or
quadratic in $Y$. In that case ${\mathcal M}$ is purely simple if and
only if $f$ is an irreducible quadratic. Then the $K$algebra
$\edm\cm$ embeds in the quadratic function field $\krx[Y]/(f)$. For
some height functions $h$ of infinite support $I$, the search for a
functional $\alpha$ for which $(h,\alpha)$ has regulator $0$ comes
down to having functions $\eta\colon I\ar K$ such that no planar curve
intersects the graph of $\eta$ on a cofinite subset. If $K$ has
characterictic not $2$, and the triplet $(m,h,\alpha)$ gives a
purelysimple Kronecker module ${\mathcal M}$ having nontrivial
endomorphisms, then $h$ attains the value $\infty$ at least once on
$\ktil$ and $h$ is finitevalued at least twice on
$\ktil$. Conversely all these $h$ form part of such triplets. The
proof of this result hinges on the fact that a rational function $r$
is a perfect square in $\krx$ if and only if $r$ is a perfect square
in the completions of $\krx$ with respect to all of its valuations.