Abstract view
Elementary Symmetric Polynomials in Numbers of Modulus $1$


Published:20020401
Printed: Apr 2002
Donald I. Cartwright
Tim Steger
Abstract
We describe the set of numbers $\sigma_k(z_1,\ldots,z_{n+1})$, where
$z_1,\ldots,z_{n+1}$ are complex numbers of modulus $1$ for which
$z_1z_2\cdots z_{n+1}=1$, and $\sigma_k$ denotes the $k$th
elementary symmetric polynomial. Consequently, we give sharp
constraints on the coefficients of a complex polynomial all of whose
roots are of the same modulus. Another application is the calculation
of the spectrum of certain adjacency operators arising naturally
on a building of type ${\tilde A}_n$.
MSC Classifications: 
05E05, 33C45, 30C15, 51E24 show english descriptions
Symmetric functions and generalizations Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) [See also 42C05 for general orthogonal polynomials and functions] Zeros of polynomials, rational functions, and other analytic functions (e.g. zeros of functions with bounded Dirichlet integral) {For algebraic theory, see 12D10; for real methods, see 26C10} Buildings and the geometry of diagrams
05E05  Symmetric functions and generalizations 33C45  Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) [See also 42C05 for general orthogonal polynomials and functions] 30C15  Zeros of polynomials, rational functions, and other analytic functions (e.g. zeros of functions with bounded Dirichlet integral) {For algebraic theory, see 12D10; for real methods, see 26C10} 51E24  Buildings and the geometry of diagrams
