Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-16T05:16:38.639Z Has data issue: false hasContentIssue false

Asymptotic Shape of Finite Packings

Published online by Cambridge University Press:  20 November 2018

KáRoly Böröczky Jr.
Affiliation:
Mathematisches Institut Universität Siegen D-57068 Siegen Germany
Uwe Schnell
Affiliation:
Mathematical Institute of the Hungarian Academy of Sciences H-1364 Budapest Pf. 127 Hungary
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $K$ be a convex body in ${{\mathbf{E}}^{d}}$ and denote by ${{C}_{n}}$ the set of centroids of $n$ non-overlapping translates of $K$. For $\varrho \,>\,0$, assume that the parallel body conv ${{C}_{n}}\,+\,\varrho K$ of conv ${{C}_{n}}$ has minimal volume. The notion of parametric density (see [21]) provides a bridge between finite and infinite packings (see [4] or [14]). It is known that there exists a maximal ${{\varrho }_{s}}(K)\,\ge \,1/(32{{d}^{2}})$ such that conv ${{C}_{n}}$ is a segment for $\varrho \,<\,{{\varrho }_{s}}$ (see [5]). We prove the existence of a minimal ${{\varrho }_{c}}(K)\,\le \,d\,+\,1$ such that if $\varrho \,>\,{{\varrho }_{c}}$ and $n$ is large then the shape of conv ${{C}_{n}}$ can not be too far from the shape of $K$. For $d\,=\,2$, we verify that ${{\varrho }_{s\,}}\,=\,{{\varrho }_{c}}$. For $d\,\ge \,3$, we present the first example of a convex body with known ${{\varrho }_{s}}$ and ${{\varrho }_{c}}$; namely, we have ${{\varrho }_{s}}\,=\,{{\varrho }_{c}}\,=\,1$ for the parallelotope.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1998

References

1. Arhelger, V., Betke, U., and Böröczky, K., Jr., Large finite lattice packings. Submitted.Google Scholar
2. Ball, K., Volume ratios and a reverse isoperimetric inequality. J. London Math. Soc. (2) 44 (1991), 351359.Google Scholar
3. Betke, U. and Böröczky, K., Jr., Large lattice packings and the Wulff–shape. Submitted.Google Scholar
4. Betke, U., Henk, M., and Wills, J.M., Finite and Infinite Packings. J. Reine Angew. Math. 453 (1994), 165191.Google Scholar
5. Betke, U., Henk, M., Sausages are good packings. Discrete Comput. Geom. 13 (1995), 297311.Google Scholar
6. Böröczky, K., Jr., Mean Projections and Finite Packings of Convex Bodies. Monatsh. Math. 118 (1994), 4154.Google Scholar
7. Burago, Y.D. and Zalgaller, V.A., Geometric Inequalities.Springer-Verlag, Berlin, 1988.Google Scholar
8. Eggleston, H.V., Convexity.Cambridge University Press, Cambridge, 1958.Google Scholar
9. Fáry, I., Sur la densité des réseaux de domaines convexes. Bull. Soc. Math. France 78 (1950), 152161.Google Scholar
10. Fejes, G. Tòth and Kuperberg, W., Packing and covering with convex sets. In: Handbook of Convex Geometry (Eds. Gruber, P.M. and Wills, J.M.), 1993. 799860.Google Scholar
11. Fejes, L. Tòth, Lagerungen in der Ebene, auf der Kugel und im Raum.Springer-Verlag, Berlin, 1972.Google Scholar
12. Fejes, L. Tòth, Research Problem 13. Period. Math. Hungar. 6 (1975), 197199.Google Scholar
13. Groemer, H., Stability of Geometric Inequalities.In: Handbook of Convex Geometry, North-Holland, Amsterdam, 1993. 124150.Google Scholar
14. Henk, M., Finite and Infinite packings. Habilitationsschrift, Universität Siegen, 1995.Google Scholar
15. John, F., Extremum problems with inequalities as subsidary conditions In: Studies and Essays Presented to R. Courant on his 60th Birthday, Interscience Publishers, New York, 1948. 187204.Google Scholar
16. Oler, N., An inequality in the geometry of numbers. Acta Math. 105 (1961), 1948.Google Scholar
17. Schneider, R., Convex geometry: The Brunn-Minkowski theory.Cambridge University Press, Cambridge, 1993.Google Scholar
18. Thue, A., Über die dichteste Zusammenstellung von kongruenten Kreisen in der Ebene. Norske Vid. Selsk. Skr. 1 (1910), 19.Google Scholar
19. Wegner, G., Über endliche Kreispackungen in der Ebene. Studia Sci.Math. Hungar. 21 (1986), 128.Google Scholar
20. Wills, J.M., Lattice packings of spheres and the Wulff-shape. Mathematika 43 (1997), 229236.Google Scholar
21. Wills, J.M., Finite sphere packings and sphere coverings. Rend. Semin.Mat.Messina Ser. II 2 (1993), 9197.Google Scholar
22. Zong, C., On a conjecture of Croft, Falconer and Guy on finite packings. Arch.Math. 64 (1995), 269272.Google Scholar