Given a nonnegative integer $m$ and a finite collection $\mathcal A$ of
linear forms on $\mathcal Q^d$, the arrangement of affine hyperplanes in
$\mathcal Q^d$ defined by the equations $\alpha(x) = k$ for $\alpha
\in \mathcal A$
and integers $k \in [-m, m]$ is denoted by $\mathcal A^m$. It is proved that
the coefficients of the characteristic polynomial of $\mathcal A^m$ are
quasi-polynomials in $m$ and that they satisfy a simple combinatorial
reciprocity law.

Let $f\colon \mathbb R^n\to \mathbb R$ be $C^\infty$ and let $h\colon
\mathbb R^n\to\mathbb R$ be positive
and continuous. For any unbounded nondecreasing sequence $\{c_k\}$
of nonnegative real numbers and for any sequence without
accumulation points $\{x_m\}$ in $\mathbb R^n$, there exists an entire
function $g\colon\mathbb C^n\to\mathbb C$ taking real values on $\mathbb R^n$ such that
\begin{align*}
&|g^{(\alpha)}(x)-f^{(\alpha)}(x)|\lt h(x), \quad |x|\ge c_k, |\alpha|\le k,
k=0,1,2,\dots,
\\
&g^{(\alpha)}(x_m)=f^{(\alpha)}(x_m), \quad |x_m|\ge c_k, |\alpha|\le k,
m,k=0,1,2,\dots.
\end{align*}
This is a version for functions of several variables of the
case $n=1$ due to L. Hoischen.

In this paper, the boundedness from below of multiplication
operators between $\alpha$-Bloch spaces $\mathcal B^\alpha$, $\alpha\gt 0$, on the
unit disk $D$ is studied completely. For a bounded multiplication
operator $M_u\colon \mathcal B^\alpha\to\mathcal B^\beta$, defined by $M_uf=uf$ for
$f\in\mathcal B^\alpha$, we prove the following result:

(i) If $0\lt \beta\lt \alpha$, or
$0\lt \alpha\le1$ and $\alpha\lt \beta$, $M_u$ is not bounded below;

(ii) if $0\lt \alpha=\beta\le1$, $M_u$ is bounded below if and only if
$\liminf_{z\to\partial D}|u(z)|\gt 0$;

(iii) if $1\lt \alpha\le\beta$, $M_u$ is
bounded below if and only if there exist a $\delta\gt 0$ and a positive
$r\lt 1$ such that for every point $z\in D$ there is a point $z'\in
D$ with the property $d(z',z)\lt r$ and
$(1-|z'|^2)^{\beta-\alpha}|u(z')|\ge\delta$, where $d(\cdot,\cdot)$ denotes
the pseudo-distance on $D$.

We describe the representation theory of $C^*$-crossed-products of a unital $C^*$-algebra A by the cyclic group of order~2. We prove that there are two main types of irreducible representations for the crossed-product: those whose restriction to A is irreducible and those who are the sum of two unitarily unequivalent representations of~A. We characterize each class in term of the restriction of the representations to the fixed point $C^*$-subalgebra of~A. We apply our results to compute the K-theory of several crossed-products of the free group on two generators.

We show that if the general real method $(\cdot ,\cdot )_\Gamma$
preserves the Banach-algebra structure, then a bilinear
interpolation theorem holds for $(\cdot ,\cdot )_\Gamma$.

In this paper, we prove that the unboundedness of ranks in families of Jacobian varieties of twisted Fermat curves is equivalent to the divergence of certain infinite series.

We show that for every separable Banach space $X$,
either $\mathrm{SP_w}(X)$ (the set of all spreading models
of $X$ generated by weakly-null sequences in $X$, modulo
equivalence) is countable, or $\mathrm{SP_w}(X)$ contains an
antichain of the size of the continuum. This answers
a question of S.~J. Dilworth, E. Odell, and B. Sari.

An example is given of a UFD which has an infinitely generated Derksen invariant. The ring is "almost rigid" meaning that the Derksen invariant is equal to the Makar-Limanov invariant. Techniques to show that a ring is (almost) rigid are discussed, among which is a generalization of Mason's abc-theorem.

We prove that the group of rational points of a non-isotrivial elliptic curve defined over the perfect closure of a function field in positive characteristic is finitely generated.

Let $\phi$ be a Drinfeld module of generic characteristic, and let X be a sufficiently generic affine subvariety of $\mathbb{G_a^g}$. We show that the intersection of X with a finite rank $\phi$-submodule of $\mathbb{G_a^g}$ is finite.

We show that the sequence of integers which have nearly the typical number of distinct prime factors forms a Poisson process. More precisely, for $\delta$ arbitrarily small and positive, the nearest neighbor spacings between integers n with $|\omega(n) - log log n| < (log log n)^{\delta}$ obey the Poisson distribution law.

Classical results of Kalton and techniques of Feder are used to study the complementation of the space $W(X, Y)$ of weakly compact operators and the space $K(X,Y)$ of compact operators in the space $L(X,Y)$ of all bounded linear maps from X to Y.

In this paper, we find a class of $(\alpha,\beta)$ metrics which have a bounded Cartan torsion. This class contains all Randers metrics. Furthermore, we give some applications and obtain two corollaries about curvature of this metrics.

We give a further decay estimate for the Dziubański-Hernández wavelets that are band-limited and have subexponential decay. This is done by constructing an appropriate bell function and using the Paley-Wiener theorem for ultradifferentiable functions.

A Pisot number is a real algebraic integer greater than 1, all of whose conjugates lie strictly inside the open unit disk; a Salem number is a real algebraic integer greater than 1, all of whose conjugate roots are inside the closed unit disk, with at least one of them of modulus exactly 1. Pisot numbers have been studied extensively, and an algorithm to generate them is well known. Our main result characterises all Pisot numbers whose minimal polynomial is derived from a Newman polynomial -- one with $\{0,1\}$-coefficients -- and shows that they form a strictly increasing sequence with limit $(1+\sqrt{5}) / 2$. It has long been known that every Pisot number is a limit point, from both sides, of sequences of Salem numbers. We show that this remains true, from at least one side, for the restricted sets of Pisot and Salem numbers that are generated by Newman polynomials.

In this paper, we establish several weighted $L^p (1\lt p \lt \infty)$
Hardy type inequalities related to the generalized Greiner operator
by improving the method of Kombe. Then the best
constants in inequalities are discussed by introducing new polar
coordinates.

We establish variants of stability estimates in norms
somewhat stronger than the $H^1$-norm under Arnold's stability hypotheses on
steady solutions to the Euler equations for fluid flow on planar
domains.

Multiplicity-free algebraic geometry is the study of subvarieties
$Y\subseteq X$ with the ``smallest invariants'' as witnessed by a
multiplicity-free Chow ring decomposition of
$[Y]\in A^{\star}(X)$ into a predetermined
linear basis.

This paper concerns the case of Richardson subvarieties of the Grassmannian
in terms of the Schubert basis. We give a nonrecursive combinatorial
classification of multiplicity-free Richardson varieties, i.e.,
we classify multiplicity-free products of Schubert classes. This answers
a question of W. Fulton.

In this paper, we define and study the geometry of semi-slant submanifolds of an almost paracontact metric manifold. We give some characterizations for a submanifold to be semi-slant submanifold to be semi-slant product and obtain integrability conditions for the distributions involved in the definition of a semi-slant submanifold.

Let P be a maximal proper parabolic subgroup of a connected simple linear algebraic group G, defined over $\mathbb C$, such that $n := \dim_{\mathbb C} G/P \geq 4$. Let $\iota \colon Z \hookrightarrow G/P$ be a reduced smooth hypersurface of degree at least $(n-1)\cdot \operatorname{degree}(T(G/P))/n$. We prove that the restriction of the tangent bundle $\iota^*TG/P$ is semistable.

Let $R$ be a dense subring of $\operatorname{End}(_DV)$, where $V$ is a left vector space over a division ring $D$. If $\dim{_DV}=\infty$, then the range of any nonzero polynomial $f(X_1,\dots,X_m)$ on $R$ is dense in $\operatorname{End}(_DV)$. As an application, let $R$ be a prime ring without nonzero nil one-sided ideals and $0\ne a\in R$. If $af(x_1,\dots,x_m)^{n(x_i)}=0$ for all $x_1,\dots,x_m\in R$, where $n(x_i)$ is a positive integer depending on $x_1,\dots,x_m$, then $f(X_1,\dots,X_m)$ is a polynomial identity of $R$ unless $R$ is a finite matrix ring over a finite field.

We consider when a single submodule and also when every submodule of a module M over a general ring R has a unique closure with respect to a hereditary torsion theory on $\operatorname{Mod}$-R.

An integral domain R is IDPF (Irreducible Divisors of Powers Finite) if, for every non-zero element a in R, the ascending chain of non-associate irreducible divisors in R of $a^{n}$ stabilizes on a finite set as n ranges over the positive integers, while R is atomic if every non-zero element that is not a unit is a product of a finite number of irreducible elements (atoms). A ring extension S of R is a root extension or radical extension if for each s in S, there exists a natural number $n(s)$ with $s^{n(s)}$ in R. In this paper it is shown that the ascent and descent of the IDPF property and atomicity for the pair of integral domains $(R,S)$ is governed by the relative sizes of the unit groups $\operatorname{U}(R)$ and $\operatorname{U}(S)$ and whether S is a root extension of R. The following results are deduced from these considerations. An atomic IDPF domain containing a field of characteristic zero is completely integrally closed. An affine domain over a field of characteristic zero is IDPF if and only if it is completely integrally closed. Let R be a Noetherian domain with integral closure S. Suppose the conductor of S into R is non-zero. Then R is IDPF if and only if S is a root extension of R and $\operatorname{U}(S)/\operatorname{U}(R)$ is finite.

We give weighted norm inequalities for the maximal fractional operator $ \mathcal M_{q,\beta }$ of Hardy-Littlewood and the fractional integral $I_{\gamma}$. These inequalities are established between $(L^{q},L^{p}) ^{\alpha }(X,d,\mu )$ spaces (which are superspaces of Lebesgue spaces $L^{\alpha}(X,d,\mu)$ and subspaces of amalgams $(L^{q},L^{p})(X,d,\mu)$) and in the setting of space of homogeneous type $(X,d,\mu)$. The conditions on the weights are stated in terms of Orlicz norm.

Let $X$ and $Y$ be Banach spaces isomorphic
to complemented subspaces of each other with supplements $A$ and
$B$. In 1996, W. T. Gowers solved the Schroeder--Bernstein (or
Cantor--Bernstein) problem for Banach spaces by showing that $X$ is not
necessarily isomorphic to $Y$. In this paper, we obtain a necessary
and sufficient condition on the sextuples $(p, q, r, s, u, v)$ in
$\mathbb N$
with $p+q \geq 1$, $r+s \geq 1$ and $u, v \in \mathbb N^*$, to provide that
$X$ is isomorphic to $Y$, whenever these spaces satisfy the following
decomposition scheme
$$
A^u \sim X^p \oplus Y^q, \quad
B^v \sim X^r \oplus Y^s.
$$
Namely, $\Phi=(p-u)(s-v)-(q+u)(r+v)$ is different from zero and $\Phi$
divides $p+q$ and $r+s$. These sextuples are called Cantor--Bernstein
sextuples for Banach spaces. The simplest case $(1, 0, 0, 1, 1, 1)$
indicates the well-known Pełczyński's decomposition method in
Banach space. On the other hand, by interchanging some Banach spaces
in the above decomposition scheme, refinements of
the Schroeder--Bernstein problem become evident.

The existence of the global attractor of a damped
forced Hirota equation in the phase space $H^1(\mathbb R)$ is proved. The
main idea is to establish the so-called asymptotic compactness
property of the solution operator by energy equation approach.

We prove that if the $(1,1)$-current of integration on an analytic subvariety $V\subset D$ satisfies the uniform Blaschke condition, then $V$ is the zero set of a holomorphic function $f$ such that $\log |f|$ is a function of bounded mean oscillation in $bD$. The domain $D$ is assumed to be smoothly bounded and of finite d'Angelo type. The proof amounts to non-isotropic estimates for a solution to the $\overline{\partial}$-equation for Carleson measures.

Let $R$ be a unit-regular ring and let $\sigma $ be an endomorphism of
$R$ such that $\sigma (e)=e$ for all $e^2=e\in R$ and let $n\ge 0$. It
is proved that every element of $R[x \mathinner;\sigma]/(x^{n+1})$ is
equivalent to an element of the form $e_0+e_1x+\dots +e_nx^n$, where
the $e_i$ are orthogonal idempotents of $R$. As an application, it is
proved that $R[x \mathinner; \sigma ]/(x^{n+1})$ is left morphic for each
$n\ge 0$.

We establish sufficient conditions on the weight functions $u$ and $v$ for the validity of the multidimensional weighted inequality $$ \Bigl(\int_E \Phi(T_k f(x))^q u(x)\,dx\Bigr)^{1/q} \le C \Bigl (\int_E \Phi(f(x))^p v(x)\,dx\Bigr )^{1/p}, $$
where 0<$p$, $q$<$\infty$, $\Phi$ is a logarithmically convex function, and $T_k$ is an integral operator over star-shaped regions. The condition is also necessary for the exponential integral inequality. Moreover, the estimation of $C$ is given and we apply the obtained results to generalize some multidimensional Levin--Cochran-Lee type inequalities.

We discuss properties of the regular part $S_{\operatorname{reg}}$ of
a subcartesian space $S$. We show that $S_{\operatorname{reg}}$ is open and dense in
$S$ and the restriction to $ S_{\operatorname{reg}}$ of the tangent
bundle space of $S$ is locally trivial.

We consider semilinear periodic problems with the right-hand side nonlinearity satisfying a double resonance condition between two successive eigenvalues. Using a combination of variational and degree theoretic methods, we prove the existence of at least two nontrivial solutions.

In an H-closed, Urysohn space, disjoint H-sets can be separated by disjoint open sets. This is not true for an arbitrary H-closed space even if one of the H-sets is a point. In this paper, we provide a systematic study of those spaces in which disjoint H-sets can be separated by disjoint open sets.

This paper studies the existence and uniqueness of almost periodic solutions of nonlinear impulsive functional differential equations with infinite delay. The results obtained are based on the Lyapunov--Razumikhin method and on differential inequalities for piecewise continuous functions.

Let $G$ be a graph of order $p$, let $a$,
$b$, and $n$ be nonnegative integers with $1\leq a\lt b$, and let $g$
and $f$ be two integer-valued functions defined on $V(G)$ such
that $a\leq g(x)\lt f(x)\leq b$ for all $x\in V(G)$. A $(g,f)$-factor
of graph $G$ is a spanning subgraph $F$ of $G$ such
that $g(x)\leq d_F(x)\leq f(x)$ for each $x\in V(F)$. Then a graph
$G$ is called $(g,f,n)$-critical if after deleting any $n$
vertices of $G$ the remaining graph of $G$ has a $(g,f)$-factor.
The binding number $\operatorname{bind}(G)$ of $G$ is the minimum value of
${|N_G(X)|}/{|X|}$ taken over all non-empty subsets $X$ of
$V(G)$ such that $N_G(X)\neq V(G)$. In this paper, it is proved
that $G$ is a $(g,f,n)$-critical graph if
\[
\operatorname{bind}(G)\gt \frac{(a+b-1)(p-1)}{(a+1)p-(a+b)-bn+2}
\quad\text{and}\quad p\geq
\frac{(a+b-1)(a+b-2)}{a+1}+\frac{bn}{a}.
\]
Furthermore, it is
shown that this
result is best possible in some sense.

Consider a finite morphism $f: X \rightarrow Y$ of smooth, projective varieties over a finite field $\mathbf{F}$. Suppose $X$ is the vanishing locus in $\mathbf{P}^N$ of $r$ forms of degree at most $d$. We show that there is a constant $C$ depending only on $(N,r,d)$ and $\deg(f)$ such that if $|{\mathbf{F}}|>C$, then $f(\mathbf{F}): X(\mathbf{F}) \rightarrow Y(\mathbf{F})$ is injective if and only if it is surjective.

By $\textrm{d}(X,Y)$ we denote the (multiplicative) Banach--Mazur distance between two normed spaces $X$ and $Y.$ Let $X$ be an $n$-dimensional normed space with $\textrm{d}(X,\ell_\infty^n) \le 2,$ where $\ell_\infty^n$ stands for $\mathbb{R}^n$ endowed with the norm $\|(x_1,\dots,x_n)\|_\infty := \max \{|x_1|,\dots, |x_n| \}.$ Then every metric space $(S,\rho)$ of cardinality $n+1$ with norm $\rho$ satisfying the condition $\max D / \min D \le 2/ \textrm{d}(X,\ell_\infty^n)$ for $D:=\{ \rho(a,b) : a, b \in S, \ a \ne b\}$ can be isometrically embedded into $X.$

We characterize those linear projections represented as a convex combination of two surjective isometries on standard Banach spaces of continuous functions with values in a strictly convex Banach space.

Let $G$ be a finite group acting linearly on the vector space $V$ over a field of arbitrary characteristic. The action is called coregular if the invariant ring is generated by algebraically independent homogeneous invariants, and the direct summand property holds if there is a surjective $k[V]^G$-linear map $\pi\colon k[V]\to k[V]^G$. The following Chevalley--Shephard--Todd type theorem is proved. Suppose $G$ is abelian. Then the action is coregular if and only if $G$ is generated by pseudo-reflections and the direct summand property holds.

We completely classify three-dimensional Lorentz manifolds, curvature homogeneous up to order one, equipped with Einstein-like metrics. New examples arise with respect to both homogeneous examples and three-dimensional Lorentz manifolds admitting a degenerate parallel null line field.

We prove that the $\mathfrak{S}$-module $\operatorname{PreLie}$ is a free Lie algebra in
the category of $\mathfrak{S}$-modules and can therefore be written as the
composition of the $\mathfrak{S}$-module $\operatorname{Lie}$ with a new $\mathfrak{S}$-module
$X$. This implies that free pre-Lie algebras in the category of
vector spaces, when considered as Lie algebras, are free on
generators that can be described using $X$. Furthermore, we define a
natural filtration on the $\mathfrak{S}$-module $X$. We also obtain a
relationship between $X$ and the $\mathfrak{S}$-module coming from the
anticyclic structure of the $\operatorname{PreLie}$ operad.

Let $\Gamma$ be a discrete group and let $f \in \ell^{1}(\Gamma)$. We observe that if the natural convolution operator $\rho_f: \ell^{\infty}(\Gamma)\to \ell^{\infty}(\Gamma)$ is injective, then $f$ is invertible in $\ell^{1}(\Gamma)$. Our proof simplifies and generalizes calculations in a preprint of Deninger and Schmidt by appealing to the direct finiteness of the algebra $\ell^{1}(\Gamma)$. We give simple examples to show that in general one cannot replace $\ell^{\infty}$ with $\ell^{p}$, $1\leq p< \infty$, nor with $L^{\infty}(G)$ for nondiscrete $G$. Finally, we consider the problem of extending the main result to the case of weighted convolution operators on $\Gamma$, and give some partial results.

In this paper we give a description of separating or disjointness preserving linear bijections on spaces of vector-valued absolutely continuous functions defined on compact subsets of the real line. We obtain that they are continuous and biseparating in the finite-dimensional case. The infinite-dimensional case is also studied.

In this paper we shall discuss nonlinear multipoint boundary value problems for second order differential equations when deviating arguments depend on the unknown solution. Sufficient conditions under which such problems have extremal and quasi-solutions are given. The problem of when a unique solution exists is also investigated. To obtain existence results, a monotone iterative technique is used. Two examples are added to verify theoretical results.

In this paper, we discuss various maximal functions on the Laguerre hypergroup $\mathbf{K}$ including the heat maximal function, the Poisson maximal function, and the Hardy--Littlewood maximal function which is consistent with the structure of hypergroup of $\mathbf{K}$. We shall establish the weak type $(1,1)$ estimates for these maximal functions. The $L^p$ estimates for $p>1$ follow from the interpolation. Some applications are included.

Using the time change method we show how to construct a solution to the stochastic equation $dX_t=b(X_{t-})dZ_t+a(X_t)dt$ with a nonnegative drift $a$ provided there exists a solution to the auxililary equation $dL_t=[a^{-1/\alpha}b](L_{t-})d\bar Z_t+dt$ where $Z, \bar Z$ are two symmetric stable processes of the same index $\alpha\in(0,2]$. This approach allows us to prove the existence of solutions for both stochastic equations for the values $0<\alpha<1$ and only measurable coefficients $a$ and $b$ satisfying some conditions of boundedness. The existence proof for the auxililary equation uses the method of integral estimates in the sense of Krylov.

We prove that the least perimeter $P(n)$ of a partition of a smooth, compact Riemannian surface into $n$ regions of equal area $A$ is asymptotic to $n/2$ times the perimeter of a planar regular hexagon of area $A$. Along the way, we derive tighter estimates for flat tori, Klein bottles, truncated cylinders, and Möbius bands.

We consider semilinear evolution equations with some locally Lipschitz nonlinearities, perturbed by Banach space valued, continuous, and adapted stochastic process. We show that under some assumptions there exists a solution to the equation. Using the result we show that there exists a mild, continuous, global solution to a semilinear Itô equation with locally Lipschitz nonlinearites. An example of the equation is given.

We prove that, in ordered plane geometries endowed with a very weak
notion of orthogonality, one can always triangulate any triangle
into seven acute triangles, and, in case the given triangle is not
acute, into no fewer than seven.

In this paper we provide lower bounds for the dimension of various critical sets, and we point out some differential maps with high dimensional critical sets.

In this paper we propose a new technical tool for analyzing
representations of Hilbert $C^*$-product systems. Using this tool,
we give a new proof that every doubly commuting representation
over $\mathbb{N}^k$ has a regular isometric dilation, and we also
prove sufficient conditions for the existence of a regular
isometric dilation of representations over more general
subsemigroups of $\mathbb R_{+}^k$.

In this paper we give a sufficient condition for a complete, simply connected, and strict nearly Kähler manifold of dimension 6 to be a homogeneous nearly Kähler manifold. This result was announced in a previous paper by the first author.

Let $f$ be a classical newform of weight $2$ on the upper half-plane $\mathcal H^{(2)}$, $E$ the corresponding strong Weil curve, $K$ a class number one imaginary quadratic field, and $F$ the base change of $f$ to $K$. Under a mild hypothesis on the pair $(f,K)$, we prove that the period ratio $\Omega_E/(\sqrt{|D|}\Omega_F)$ is in $\mathbb Q$. Here $\Omega_F$ is the unique minimal positive period of $F$, and $\Omega_E$ the area of $E(\mathbb C)$. The claim is a specialization to base change forms of a conjecture proposed and numerically verified by Cremona and Whitley.

This paper
discusses the connection between the local cohomology modules and
the Serre classes of $R$-modules. This connection has provided a common
language for expressing some results regarding the local cohomology
$R$-modules that have appeared in different papers.

We investigate the behavior of the quasi-Baer and the
right FI-extending right ring hulls under various ring extensions
including group ring extensions, full and triangular matrix ring
extensions, and infinite matrix ring extensions. As a consequence,
we show that for semiprime rings $R$ and $S$, if $R$ and $S$ are
Morita equivalent, then so are the quasi-Baer right ring hulls
$\widehat{Q}_{\mathfrak{qB}}(R)$ and $\widehat{Q}_{\mathfrak{qB}}(S)$ of
$R$ and $S$, respectively. As an application, we prove that if
unital $C^*$-algebras $A$ and $B$ are Morita equivalent as rings,
then the bounded central closure of $A$ and that of $B$ are
strongly Morita equivalent as $C^*$-algebras. Our results show
that the quasi-Baer property is always preserved by infinite
matrix rings, unlike the Baer property. Moreover, we give an
affirmative answer to an open question of Goel and Jain for the
commutative group ring $A[G]$ of a torsion-free Abelian group $G$
over a commutative semiprime quasi-continuous ring $A$. Examples
that illustrate and delimit the results of this paper are provided.

The bigraded Hilbert function and the minimal free resolutions for the
diagonal coinvariants of the dihedral groups are exhibited, as well as for
all their bigraded invariant Gorenstein quotients.

For a given convex body $K$ in ${\mathbb R}^d$, a random polytope
$K^{(n)}$ is defined (essentially) as the intersection of $n$
independent closed halfspaces containing $K$ and having an isotropic
and (in a specified sense) uniform distribution. We prove upper and
lower bounds of optimal orders for the difference of the mean widths
of $K^{(n)}$ and $K$ as $n$ tends to infinity. For a simplicial
polytope $P$, a precise asymptotic formula for the difference of the
mean widths of $P^{(n)}$ and $P$ is obtained.

In this paper, we investigate
a proper CAT(0) space $(X,d)$
that is homeomorphic to $\mathbb R^2$ and
we show that the asymptotic dimension $\operatorname{asdim} (X,d)$ is
equal to $2$.

In this paper, we explore a generalization of the notion of
integrality. In particular, we study a near-integrality condition that is
intermediate between the concepts of integral and almost integral.
This property (referred to as the $\Omega$-almost integral
property) is a representative independent specialization of the
standard notion of almost integrality. Some of the properties of
this generalization are explored in this paper, and these properties
are compared with the notion of pseudo-integrality introduced by
Anderson, Houston, and Zafrullah. Additionally, it is
shown that the $\Omega$-almost integral property serves to
characterize the survival/lying over pairs of Dobbs and Coykendall

Let $R$ be a commutative Noetherian ring and $\mathfrak{a}$ a proper ideal
of $R$. We show that if $n:=\operatorname{grade}_R\mathfrak{a}$, then
$\operatorname{End}_R(H^n_\mathfrak{a}(R))\cong \operatorname{Ext}_R^n(H^n_\mathfrak{a}(R),R)$. We also
prove that, for a nonnegative integer $n$ such that
$H^i_\mathfrak{a}(R)=0$ for every $i\neq n$, if $\operatorname{Ext}_R^i(R_z,R)=0$ for
all $i >0$ and $z \in \mathfrak{a}$, then
$\operatorname{End}_R(H^n_\mathfrak{a}(R))$ is a homomorphic
image of $R$, where $R_z$ is the ring of fractions of $R$ with
respect to a multiplicatively closed subset $\{z^j \mid j \geqslant
0 \}$ of $R$. Moreover, if $\operatorname{Hom}_R(R_z,R)=0$ for all $z
\in \mathfrak{a}$,
then $\mu_{H^n_\mathfrak{a}(R)}$ is an isomorphism, where $\mu_{H^n_\mathfrak{a}(R)}$
is the canonical ring homomorphism $R \rightarrow \operatorname{End}_R(H^n_\mathfrak{a}(R))$.

We study a semilinear elliptic problem on a compact Riemannian
manifold with boundary, subject to an inhomogeneous Neumann
boundary condition. Under various hypotheses on the nonlinear
terms, depending on their behaviour in the origin and infinity, we
prove multiplicity of solutions by using variational arguments.

We construct a Laplace isospectral deformation of metrics on an
orbifold quotient of a nilmanifold. Each orbifold in the deformation
contains singular points with order two isotropy. Isospectrality is
obtained by modifying a generalization of Sunada's theorem due to
DeTurck and Gordon.

The classical approach to studying operator ideals using tensor
norms mainly focuses on those tensor norms and operator ideals
defined by means of $\ell_p$ spaces. In a previous paper,
an interpolation space, defined via the real method
and using
$\ell_p$ spaces, was used to define a tensor
norm, and the associated minimal operator ideals were characterized.
In this paper, the next natural step is taken, that is, the
corresponding maximal operator
ideals are characterized. As an application, necessary and sufficient
conditions for the coincidence of
the maximal and minimal ideals are given.
Finally, the previous results are used in order to find some new
metric properties of the mentioned tensor norm.

We consider the problem of simultaneous extension of continuous
convex metrics defined on subcontinua of a Peano continuum. We prove
that there is an extension operator for convex metrics that is
continuous with respect to the uniform topology.

The fiber $W_{n}$ of the double suspension
$S^{2n-1}\rightarrow\Omega^{2} S^{2n+1}$
is known to have a classifying space $BW_{n}$. An important
conjecture linking the $EHP$ sequence to the homotopy theory of
Moore spaces is that $BW_{n}\simeq\Omega T^{2np+1}(p)$, where $T^{2np+1}(p)$
is Anick's space. This is known if $n=1$. We prove the $n=p$ case
and establish some related properties.

A new and elementary proof is given of the recent result of Cuccagna, Pelinovsky,
and Vougalter based on the variational principle for the
quadratic form of a self-adjoint operator.
It is the negative index theorem for a linearized NLS operator in
three dimensions.

We construct new examples of surfaces of general type with $p_g=0$ and $K^2=5$ as ${\mathbb Z}_2 \times {\mathbb Z}_2$-covers and show that they are genus three hyperelliptic fibrations with bicanonical map of degree two.

We extend the idea of interval pattern avoidance defined by Yong and
the author for $S_n$ to arbitrary Weyl groups using the definition of
pattern avoidance due to Billey and Braden, and Billey and Postnikov.
We show that, as previously shown by Yong and the
author for $\operatorname{GL}_n$, interval pattern avoidance is a universal tool for
characterizing which Schubert varieties have certain local properties,
and where these local properties hold.