CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 68 ( Computer science )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2011 (vol 54 pp. 566)

Zhou, Xiang-Jun; Shi, Lei; Zhou, Ding-Xuan
Non-uniform Randomized Sampling for Multivariate Approximation by High Order Parzen Windows
We consider approximation of multivariate functions in Sobolev spaces by high order Parzen windows in a non-uniform sampling setting. Sampling points are neither i.i.d. nor regular, but are noised from regular grids by non-uniform shifts of a probability density function. Sample function values at sampling points are drawn according to probability measures with expected values being values of the approximated function. The approximation orders are estimated by means of regularity of the approximated function, the density function, and the order of the Parzen windows, under suitable choices of the scaling parameter.

Keywords:multivariate approximation, Sobolev spaces, non-uniform randomized sampling, high order Parzen windows, convergence rates
Categories:68T05, 62J02

2. CMB 2011 (vol 54 pp. 288)

Jacobs, David P.; Rayes, Mohamed O.; Trevisan, Vilmar
The Resultant of Chebyshev Polynomials
Let $T_{n}$ denote the $n$-th Chebyshev polynomial of the first kind, and let $U_{n}$ denote the $n$-th Chebyshev polynomial of the second kind. We give an explicit formula for the resultant $\operatorname{res}( T_{m}, T_{n} )$. Similarly, we give a formula for $\operatorname{res}( U_{m}, U_{n} )$.

Keywords:resultant, Chebyshev polynomial
Categories:11Y11, 68W20

3. CMB 2004 (vol 47 pp. 343)

Drensky, Vesselin; Hammoudi, Lakhdar
Combinatorics of Words and Semigroup Algebras Which Are Sums of Locally Nilpotent Subalgebras
We construct new examples of non-nil algebras with any number of generators, which are direct sums of two locally nilpotent subalgebras. Like all previously known examples, our examples are contracted semigroup algebras and the underlying semigroups are unions of locally nilpotent subsemigroups. In our constructions we make more transparent than in the past the close relationship between the considered problem and combinatorics of words.

Keywords:locally nilpotent rings,, nil rings, locally nilpotent semigroups,, semigroup algebras, monomial algebras, infinite words
Categories:16N40, 16S15, 20M05, 20M25, 68R15

© Canadian Mathematical Society, 2014 : https://cms.math.ca/