Expand all Collapse all | Results 1 - 4 of 4 |
1. CMB 2013 (vol 57 pp. 357)
Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds Let $\Gamma_1$ and $\Gamma_2$ be Bieberbach groups contained in the
full isometry group $G$ of $\mathbb{R}^n$.
We prove that if the compact flat manifolds $\Gamma_1\backslash\mathbb{R}^n$ and
$\Gamma_2\backslash\mathbb{R}^n$ are strongly isospectral then the Bieberbach groups
$\Gamma_1$ and $\Gamma_2$ are representation equivalent, that is, the
right regular representations $L^2(\Gamma_1\backslash G)$ and
$L^2(\Gamma_2\backslash G)$ are unitarily equivalent.
Keywords:representation equivalent, strongly isospectrality, compact flat manifolds Categories:58J53, 22D10 |
2. CMB 2010 (vol 53 pp. 684)
An Isospectral Deformation on an Infranil-Orbifold
We construct a Laplace isospectral deformation of metrics on an
orbifold quotient of a nilmanifold. Each orbifold in the deformation
contains singular points with order two isotropy. Isospectrality is
obtained by modifying a generalization of Sunada's theorem due to
DeTurck and Gordon.
Keywords:spectral geometry, global Riemannian geometry, orbifold, nilmanifold Categories:58J53, 53C20 |
3. CMB 2009 (vol 52 pp. 66)
Huber's Theorem for Hyperbolic Orbisurfaces We show that for compact orientable hyperbolic orbisurfaces, the
Laplace spectrum determines the length spectrum as well as the
number of singular points of a given order. The converse also holds, giving
a full generalization of Huber's theorem to the setting of
compact orientable hyperbolic orbisurfaces.
Keywords:Huber's theorem, length spectrum, isospectral, orbisurfaces Categories:58J53, 11F72 |
4. CMB 2006 (vol 49 pp. 226)
The Spectrum and Isometric Embeddings of Surfaces of Revolution A sharp upper bound on the first $S^{1}$ invariant eigenvalue of the Laplacian
for $S^1$ invariant metrics on $S^2$ is used to find obstructions to the existence
of $S^1$ equivariant isometric embeddings of such metrics in $(\R^3,\can)$. As a
corollary we prove: If the first four distinct eigenvalues have even multiplicities
then the metric cannot be equivariantly, isometrically embedded in $(\R^3,\can)$. This
leads to generalizations of some classical results in the theory of surfaces.
Categories:58J50, 58J53, 53C20, 35P15 |