Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 58J50 ( Spectral problems; spectral geometry; scattering theory [See also 35Pxx] )

  Expand all        Collapse all Results 1 - 4 of 4

1. CMB Online first

Karpukhin, Mikhail
Spectral Properties of a Family of Minimal Tori of Revolution in Five-dimensional Sphere
The normalized eigenvalues $\Lambda_i(M,g)$ of the Laplace-Beltrami operator can be considered as functionals on the space of all Riemannian metrics $g$ on a fixed surface $M$. In recent papers several explicit examples of extremal metrics were provided. These metrics are induced by minimal immersions of surfaces in $\mathbb{S}^3$ or $\mathbb{S}^4$. In the present paper a family of extremal metrics induced by minimal immersions in $\mathbb{S}^5$ is investigated.

Keywords:extremal metric, minimal surface

2. CMB 2008 (vol 51 pp. 249)

Mangoubi, Dan
On the Inner Radius of a Nodal Domain
Let $M$ be a closed Riemannian manifold. We consider the inner radius of a nodal domain for a large eigenvalue $\lambda$. We give upper and lower bounds on the inner radius of the type $C/\lambda^\alpha(\log\lambda)^\beta$. Our proof is based on a local behavior of eigenfunctions discovered by Donnelly and Fefferman and a Poincar\'{e} type inequality proved by Maz'ya. Sharp lower bounds are known only in dimension two. We give an account of this case too.

Categories:58J50, 35P15, 35P20

3. CMB 2008 (vol 51 pp. 100)

Petkov, Vesselin
Dynamical Zeta Function for Several Strictly Convex Obstacles
The behavior of the dynamical zeta function $Z_D(s)$ related to several strictly convex disjoint obstacles is similar to that of the inverse $Q(s) = \frac{1}{\zeta(s)}$ of the Riemann zeta function $\zeta(s)$. Let $\Pi(s)$ be the series obtained from $Z_D(s)$ summing only over primitive periodic rays. In this paper we examine the analytic singularities of $Z_D(s)$ and $\Pi(s)$ close to the line $\Re s = s_2$, where $s_2$ is the abscissa of absolute convergence of the series obtained by the second iterations of the primitive periodic rays. We show that at least one of the functions $Z_D(s), \Pi(s)$ has a singularity at $s = s_2$.

Keywords:dynamical zeta function, periodic rays
Categories:11M36, 58J50

4. CMB 2006 (vol 49 pp. 226)

Engman, Martin
The Spectrum and Isometric Embeddings of Surfaces of Revolution
A sharp upper bound on the first $S^{1}$ invariant eigenvalue of the Laplacian for $S^1$ invariant metrics on $S^2$ is used to find obstructions to the existence of $S^1$ equivariant isometric embeddings of such metrics in $(\R^3,\can)$. As a corollary we prove: If the first four distinct eigenvalues have even multiplicities then the metric cannot be equivariantly, isometrically embedded in $(\R^3,\can)$. This leads to generalizations of some classical results in the theory of surfaces.

Categories:58J50, 58J53, 53C20, 35P15

© Canadian Mathematical Society, 2015 :