Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 58J ( Partial differential equations on manifolds; differential operators [See also 32Wxx, 35-XX, 53Cxx] )

  Expand all        Collapse all Results 1 - 11 of 11

1. CMB Online first

Karpukhin, Mikhail
Spectral Properties of a Family of Minimal Tori of Revolution in Five-dimensional Sphere
The normalized eigenvalues $\Lambda_i(M,g)$ of the Laplace-Beltrami operator can be considered as functionals on the space of all Riemannian metrics $g$ on a fixed surface $M$. In recent papers several explicit examples of extremal metrics were provided. These metrics are induced by minimal immersions of surfaces in $\mathbb{S}^3$ or $\mathbb{S}^4$. In the present paper a family of extremal metrics induced by minimal immersions in $\mathbb{S}^5$ is investigated.

Keywords:extremal metric, minimal surface

2. CMB 2013 (vol 57 pp. 357)

Lauret, Emilio A.
Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds
Let $\Gamma_1$ and $\Gamma_2$ be Bieberbach groups contained in the full isometry group $G$ of $\mathbb{R}^n$. We prove that if the compact flat manifolds $\Gamma_1\backslash\mathbb{R}^n$ and $\Gamma_2\backslash\mathbb{R}^n$ are strongly isospectral then the Bieberbach groups $\Gamma_1$ and $\Gamma_2$ are representation equivalent, that is, the right regular representations $L^2(\Gamma_1\backslash G)$ and $L^2(\Gamma_2\backslash G)$ are unitarily equivalent.

Keywords:representation equivalent, strongly isospectrality, compact flat manifolds
Categories:58J53, 22D10

3. CMB 2011 (vol 54 pp. 249)

Dattori da Silva, Paulo L.
A Note about Analytic Solvability of Complex Planar Vector Fields with Degeneracies
This paper deals with the analytic solvability of a special class of complex vector fields defined on the real plane, where they are tangent to a closed real curve, while off the real curve, they are elliptic.

Keywords:semi-global solvability, analytic solvability, normalization, complex vector fields, condition~($\mathcal P$)
Categories:35A01, 58Jxx

4. CMB 2010 (vol 53 pp. 674)

Kristály, Alexandru; Papageorgiou, Nikolaos S.; Varga, Csaba
Multiple Solutions for a Class of Neumann Elliptic Problems on Compact Riemannian Manifolds with Boundary
We study a semilinear elliptic problem on a compact Riemannian manifold with boundary, subject to an inhomogeneous Neumann boundary condition. Under various hypotheses on the nonlinear terms, depending on their behaviour in the origin and infinity, we prove multiplicity of solutions by using variational arguments.

Keywords:Riemannian manifold with boundary, Neumann problem, sublinearity at infinity, multiple solutions
Categories:58J05, 35P30

5. CMB 2010 (vol 53 pp. 684)

Proctor, Emily; Stanhope, Elizabeth
An Isospectral Deformation on an Infranil-Orbifold
We construct a Laplace isospectral deformation of metrics on an orbifold quotient of a nilmanifold. Each orbifold in the deformation contains singular points with order two isotropy. Isospectrality is obtained by modifying a generalization of Sunada's theorem due to DeTurck and Gordon.

Keywords:spectral geometry, global Riemannian geometry, orbifold, nilmanifold
Categories:58J53, 53C20

6. CMB 2009 (vol 52 pp. 66)

Dryden, Emily B.; Strohmaier, Alexander
Huber's Theorem for Hyperbolic Orbisurfaces
We show that for compact orientable hyperbolic orbisurfaces, the Laplace spectrum determines the length spectrum as well as the number of singular points of a given order. The converse also holds, giving a full generalization of Huber's theorem to the setting of compact orientable hyperbolic orbisurfaces.

Keywords:Huber's theorem, length spectrum, isospectral, orbisurfaces
Categories:58J53, 11F72

7. CMB 2008 (vol 51 pp. 467)

Wang, Yue
Coupled Vortex Equations on Complete Kähler Manifolds
In this paper, we first investigate the Dirichlet problem for coupled vortex equations. Secondly, we give existence results for solutions of the coupled vortex equations on a class of complete noncompact K\"ahler manifolds which include simply-connected strictly negative curved manifolds, Hermitian symmetric spaces of noncompact type and strictly pseudo-convex domains equipped with the Bergmann metric.

Categories:58J05, 53C07

8. CMB 2008 (vol 51 pp. 249)

Mangoubi, Dan
On the Inner Radius of a Nodal Domain
Let $M$ be a closed Riemannian manifold. We consider the inner radius of a nodal domain for a large eigenvalue $\lambda$. We give upper and lower bounds on the inner radius of the type $C/\lambda^\alpha(\log\lambda)^\beta$. Our proof is based on a local behavior of eigenfunctions discovered by Donnelly and Fefferman and a Poincar\'{e} type inequality proved by Maz'ya. Sharp lower bounds are known only in dimension two. We give an account of this case too.

Categories:58J50, 35P15, 35P20

9. CMB 2008 (vol 51 pp. 100)

Petkov, Vesselin
Dynamical Zeta Function for Several Strictly Convex Obstacles
The behavior of the dynamical zeta function $Z_D(s)$ related to several strictly convex disjoint obstacles is similar to that of the inverse $Q(s) = \frac{1}{\zeta(s)}$ of the Riemann zeta function $\zeta(s)$. Let $\Pi(s)$ be the series obtained from $Z_D(s)$ summing only over primitive periodic rays. In this paper we examine the analytic singularities of $Z_D(s)$ and $\Pi(s)$ close to the line $\Re s = s_2$, where $s_2$ is the abscissa of absolute convergence of the series obtained by the second iterations of the primitive periodic rays. We show that at least one of the functions $Z_D(s), \Pi(s)$ has a singularity at $s = s_2$.

Keywords:dynamical zeta function, periodic rays
Categories:11M36, 58J50

10. CMB 2006 (vol 49 pp. 226)

Engman, Martin
The Spectrum and Isometric Embeddings of Surfaces of Revolution
A sharp upper bound on the first $S^{1}$ invariant eigenvalue of the Laplacian for $S^1$ invariant metrics on $S^2$ is used to find obstructions to the existence of $S^1$ equivariant isometric embeddings of such metrics in $(\R^3,\can)$. As a corollary we prove: If the first four distinct eigenvalues have even multiplicities then the metric cannot be equivariantly, isometrically embedded in $(\R^3,\can)$. This leads to generalizations of some classical results in the theory of surfaces.

Categories:58J50, 58J53, 53C20, 35P15

11. CMB 2002 (vol 45 pp. 378)

Fernández-López, Manuel; García-Río, Eduardo; Kupeli, Demir N.
The Local Möbius Equation and Decomposition Theorems in Riemannian Geometry
A partial differential equation, the local M\"obius equation, is introduced in Riemannian geometry which completely characterizes the local twisted product structure of a Riemannian manifold. Also the characterizations of warped product and product structures of Riemannian manifolds are made by the local M\"obius equation and an additional partial differential equation.

Keywords:submersion, Möbius equation, twisted product, warped product, product Riemannian manifolds
Categories:53C12, 58J99

© Canadian Mathematical Society, 2015 :