Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: All MSC categories starting with 58G25

  Expand all        Collapse all Results 1 - 5 of 5

1. CMB 2012 (vol 56 pp. 814)

Petridis, Yiannis N.; Raulf, Nicole; Risager, Morten S.
Quantum Limits of Eisenstein Series and Scattering States
We identify the quantum limits of scattering states for the modular surface. This is obtained through the study of quantum measures of non-holomorphic Eisenstein series away from the critical line. We provide a range of stability for the quantum unique ergodicity theorem of Luo and Sarnak.

Keywords:quantum limits, Eisenstein series, scattering poles
Categories:11F72, 58G25, 35P25

2. CMB 2011 (vol 56 pp. 3)

Aïssiou, Tayeb
Semiclassical Limits of Eigenfunctions on Flat $n$-Dimensional Tori
We provide a proof of a conjecture by Jakobson, Nadirashvili, and Toth stating that on an $n$-dimensional flat torus $\mathbb T^{n}$, and the Fourier transform of squares of the eigenfunctions $|\varphi_\lambda|^2$ of the Laplacian have uniform $l^n$ bounds that do not depend on the eigenvalue $\lambda$. The proof is a generalization of an argument by Jakobson, et al. for the lower dimensional cases. These results imply uniform bounds for semiclassical limits on $\mathbb T^{n+2}$. We also prove a geometric lemma that bounds the number of codimension-one simplices satisfying a certain restriction on an $n$-dimensional sphere $S^n(\lambda)$ of radius $\sqrt{\lambda}$, and we use it in the proof.

Keywords:semiclassical limits, eigenfunctions of Laplacian on a torus, quantum limits
Categories:58G25, 81Q50, 35P20, 42B05

3. CMB 2001 (vol 44 pp. 160)

Langlands, Robert P.
The Trace Formula and Its Applications: An Introduction to the Work of James Arthur
James Arthur was awarded the Canada Gold Medal of the National Science and Engineering Research Council in 1999. This introduction to his work is an attempt to explain his methods and his goals to the mathematical community at large.

Categories:11F70, 11F72, 58G25

4. CMB 2000 (vol 43 pp. 51)

Edward, Julian
Eigenfunction Decay For the Neumann Laplacian on Horn-Like Domains
The growth properties at infinity for eigenfunctions corresponding to embedded eigenvalues of the Neumann Laplacian on horn-like domains are studied. For domains that pinch at polynomial rate, it is shown that the eigenfunctions vanish at infinity faster than the reciprocal of any polynomial. For a class of domains that pinch at an exponential rate, weaker, $L^2$ bounds are proven. A corollary is that eigenvalues can accumulate only at zero or infinity.

Keywords:Neumann Laplacian, horn-like domain, spectrum
Categories:35P25, 58G25

5. CMB 1997 (vol 40 pp. 204)

Meyerhoff, Robert; Ouyang, Mingqing
The $\eta$-invariants of cusped hyperbolic $3$-manifolds
In this paper, we define the $\eta$-invariant for a cusped hyperbolic $3$-manifold and discuss some of its applications. Such an invariant detects the chirality of a hyperbolic knot or link and can be used to distinguish many links with homeomorphic complements.

Categories:57M50, 53C30, 58G25

© Canadian Mathematical Society, 2014 :