1. CMB 2004 (vol 47 pp. 607)
 Plamenevskaya, Olga

A Residue Formula for $\SU(2)$Valued Moment Maps
Jeffrey and Kirwan gave expressions
for intersection pairings on the reduced space
$M_0=\mu^{1}(0)/G$ of a Hamiltonian $G$space $M$
in terms of multiple residues.
In this paper we prove a residue formula for
symplectic volumes of reduced spaces of a quasiHamiltonian
$\SU(2)$space. The definition of quasiHamiltonian
$G$spaces was recently introduced in .
Category:58F05 

2. CMB 2001 (vol 44 pp. 323)
 Schuman, Bertrand

Une classe d'hamiltoniens polynomiaux isochrones
Soit $H_0 = \frac{x^2+y^2}{2}$ un hamiltonien isochrone du plan
$\Rset^2$. On met en \'evidence une classe d'hamiltoniens isochrones
qui sont des perturbations polynomiales de $H_0$. On obtient alors
une condition n\'ecessaire d'isochronisme, et un crit\`ere de choix
pour les hamiltoniens isochrones. On voit ce r\'esultat comme \'etant
une g\'en\'eralisation du caract\`ere isochrone des perturbations
hamiltoniennes homog\`enes consid\'er\'ees dans [L], [P], [S].
Let $H_0 = \frac{x^2+y^2}{2}$ be an isochronous Hamiltonian of the
plane $\Rset^2$. We obtain a necessary condition for a system to be
isochronous. We can think of this result as a generalization of the
isochronous behaviour of the homogeneous polynomial perturbation of
the Hamiltonian $H_0$ considered in [L], [P], [S].
Keywords:Hamiltonian system, normal forms, resonance, linearization Categories:34C20, 58F05, 58F22, 58F30 

3. CMB 2001 (vol 44 pp. 129)
 CurrásBosch, Carlos

LinÃ©arisation symplectique en dimension 2
In this paper the germ of neighborhood of a compact leaf in a
Lagrangian foliation is symplectically classified when the compact
leaf is $\bT^2$, the affine structure induced by the Lagrangian
foliation on the leaf is complete, and the holonomy of $\bT^2$ in
the foliation linearizes. The germ of neighborhood is classified by a
function, depending on one transverse coordinate, this function is
related to the affine structure of the nearly compact leaves.
Keywords:symplectic manifold, Lagrangian foliation, affine connection Categories:53C12, 58F05 
