CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: All MSC categories starting with 58F05

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2004 (vol 47 pp. 607)

Plamenevskaya, Olga
A Residue Formula for $\SU(2)$-Valued Moment Maps
Jeffrey and Kirwan gave expressions for intersection pairings on the reduced space $M_0=\mu^{-1}(0)/G$ of a Hamiltonian $G$-space $M$ in terms of multiple residues. In this paper we prove a residue formula for symplectic volumes of reduced spaces of a quasi-Hamiltonian $\SU(2)$-space. The definition of quasi-Hamiltonian $G$-spaces was recently introduced in .

Category:58F05

2. CMB 2001 (vol 44 pp. 323)

Schuman, Bertrand
Une classe d'hamiltoniens polynomiaux isochrones
Soit $H_0 = \frac{x^2+y^2}{2}$ un hamiltonien isochrone du plan $\Rset^2$. On met en \'evidence une classe d'hamiltoniens isochrones qui sont des perturbations polynomiales de $H_0$. On obtient alors une condition n\'ecessaire d'isochronisme, et un crit\`ere de choix pour les hamiltoniens isochrones. On voit ce r\'esultat comme \'etant une g\'en\'eralisation du caract\`ere isochrone des perturbations hamiltoniennes homog\`enes consid\'er\'ees dans [L], [P], [S]. Let $H_0 = \frac{x^2+y^2}{2}$ be an isochronous Hamiltonian of the plane $\Rset^2$. We obtain a necessary condition for a system to be isochronous. We can think of this result as a generalization of the isochronous behaviour of the homogeneous polynomial perturbation of the Hamiltonian $H_0$ considered in [L], [P], [S].

Keywords:Hamiltonian system, normal forms, resonance, linearization
Categories:34C20, 58F05, 58F22, 58F30

3. CMB 2001 (vol 44 pp. 129)

Currás-Bosch, Carlos
Linéarisation symplectique en dimension 2
In this paper the germ of neighborhood of a compact leaf in a Lagrangian foliation is symplectically classified when the compact leaf is $\bT^2$, the affine structure induced by the Lagrangian foliation on the leaf is complete, and the holonomy of $\bT^2$ in the foliation linearizes. The germ of neighborhood is classified by a function, depending on one transverse coordinate, this function is related to the affine structure of the nearly compact leaves.

Keywords:symplectic manifold, Lagrangian foliation, affine connection
Categories:53C12, 58F05

© Canadian Mathematical Society, 2014 : https://cms.math.ca/