CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 58C20 ( Differentiation theory (Gateaux, Frechet, etc.) [See also 26Exx, 46G05] )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2005 (vol 48 pp. 283)

Thibault, Lionel; Zagrodny, Dariusz
Enlarged Inclusion of Subdifferentials
This paper studies the integration of inclusion of subdifferentials. Under various verifiable conditions, we obtain that if two proper lower semicontinuous functions $f$ and $g$ have the subdifferential of $f$ included in the $\gamma$-enlargement of the subdifferential of $g$, then the difference of those functions is $ \gamma$-Lipschitz over their effective domain.

Keywords:subdifferential,, directionally regular function,, approximate convex function,, subdifferentially and directionally stable function
Categories:49J52, 46N10, 58C20

2. CMB 2003 (vol 46 pp. 481)

Bachir, M.; Lancien, G.
On the Composition of Differentiable Functions
We prove that a Banach space $X$ has the Schur property if and only if every $X$-valued weakly differentiable function is Fr\'echet differentiable. We give a general result on the Fr\'echet differentiability of $f\circ T$, where $f$ is a Lipschitz function and $T$ is a compact linear operator. Finally we study, using in particular a smooth variational principle, the differentiability of the semi norm $\Vert \ \Vert_{\lip}$ on various spaces of Lipschitz functions.

Categories:58C20, 46B20

3. CMB 2000 (vol 43 pp. 25)

Bounkhel, M.; Thibault, L.
Subdifferential Regularity of Directionally Lipschitzian Functions
Formulas for the Clarke subdifferential are always expressed in the form of inclusion. The equality form in these formulas generally requires the functions to be directionally regular. This paper studies the directional regularity of the general class of extended-real-valued functions that are directionally Lipschitzian. Connections with the concept of subdifferential regularity are also established.

Keywords:subdifferential regularity, directional regularity, directionally Lipschitzian functions
Categories:49J52, 58C20, 49J50, 90C26

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/