1. CMB Online first
 Morimoto, Masaharu

Cokernels of homomorphisms from Burnside rings to inverse limits
Let $G$ be a finite group and
let $A(G)$ denote the Burnside ring of $G$.
Then an inverse limit $L(G)$ of the groups $A(H)$ for
proper subgroups $H$ of $G$ and a homomorphism
${\operatorname{res}}$ from $A(G)$ to $L(G)$ are obtained in a natural
way.
Let $Q(G)$ denote the cokernel of ${\operatorname{res}}$.
For a prime $p$,
let $N(p)$ be the minimal
normal subgroup of $G$ such that the order of $G/N(p)$ is
a power of $p$, possibly $1$.
In this paper we prove that $Q(G)$ is isomorphic to
the cartesian product of the groups $Q(G/N(p))$, where $p$
ranges over the primes dividing the order of $G$.
Keywords:Burnside ring, inverse limit, finite group Categories:19A22, 57S17 

2. CMB 2007 (vol 50 pp. 206)
 Golasiński, Marek; Gonçalves, Daciberg Lima

Spherical Space Forms: Homotopy Types and SelfEquivalences for the Group $({\mathbb Z}/a\rtimes{\mathbb Z}/b) \times SL_2\,(\mathbb{F}_p)$
Let $G=({\mathbb Z}/a\rtimes{\mathbb Z}/b) \times
\SL_2(\mathbb{F}_p)$, and let $X(n)$ be an $n$dimensional
$CW$complex of the homotopy type of an $n$sphere. We study the
automorphism group $\Aut (G)$ in order to compute the number of
distinct homotopy types of spherical space forms with respect to free
and cellular $G$actions on all $CW$complexes $X(2dn1)$, where $2d$
is the period of $G$. The groups ${\mathcal E}(X(2dn1)/\mu)$ of self
homotopy equivalences of space forms $X(2dn1)/\mu$ associated with
free and cellular $G$actions $\mu$ on $X(2dn1)$ are determined as
well.
Keywords:automorphism group, $CW$complex, free and cellular $G$action, group of self homotopy equivalences, LyndonHochschildSerre spectral sequence, special (linear) group, spherical space form Categories:55M35, 55P15, 20E22, 20F28, 57S17 

3. CMB 2004 (vol 47 pp. 60)
 Little, Robert D.

Rational Integer Invariants of Regular Cyclic Actions
Let $g\colon M^{2n}\rightarrow M^{2n}$ be a smooth map of period $m>2$ which
preserves orientation. Suppose that the cyclic action defined by $g$ is regular
and that the normal bundle of the fixed point set $F$ has a $g$equivariant
complex structure. Let $F\pitchfork F$ be the transverse selfintersection of
$F$ with itself. If the $g$signature $\Sign (g,M)$ is a rational integer and
$n<\phi (m)$, then there exists a choice of orientations such that $\Sign(g,M)=
\Sign F=\Sign(F\pitchfork F)$.
Category:57S17 
