Expand all Collapse all | Results 1 - 2 of 2 |
1. CMB 2007 (vol 50 pp. 206)
Spherical Space Forms: Homotopy Types and Self-Equivalences for the Group $({\mathbb Z}/a\rtimes{\mathbb Z}/b) \times SL_2\,(\mathbb{F}_p)$ |
Spherical Space Forms: Homotopy Types and Self-Equivalences for the Group $({\mathbb Z}/a\rtimes{\mathbb Z}/b) \times SL_2\,(\mathbb{F}_p)$ Let $G=({\mathbb Z}/a\rtimes{\mathbb Z}/b) \times
\SL_2(\mathbb{F}_p)$, and let $X(n)$ be an $n$-dimensional
$CW$-complex of the homotopy type of an $n$-sphere. We study the
automorphism group $\Aut (G)$ in order to compute the number of
distinct homotopy types of spherical space forms with respect to free
and cellular $G$-actions on all $CW$-complexes $X(2dn-1)$, where $2d$
is the period of $G$. The groups ${\mathcal E}(X(2dn-1)/\mu)$ of self
homotopy equivalences of space forms $X(2dn-1)/\mu$ associated with
free and cellular $G$-actions $\mu$ on $X(2dn-1)$ are determined as
well.
Keywords:automorphism group, $CW$-complex, free and cellular $G$-action, group of self homotopy equivalences, Lyndon--Hochschild--Serre spectral sequence, special (linear) group, spherical space form Categories:55M35, 55P15, 20E22, 20F28, 57S17 |
2. CMB 2004 (vol 47 pp. 60)
Rational Integer Invariants of Regular Cyclic Actions Let $g\colon M^{2n}\rightarrow M^{2n}$ be a smooth map of period $m>2$ which
preserves orientation. Suppose that the cyclic action defined by $g$ is regular
and that the normal bundle of the fixed point set $F$ has a $g$-equivariant
complex structure. Let $F\pitchfork F$ be the transverse self-intersection of
$F$ with itself. If the $g$-signature $\Sign (g,M)$ is a rational integer and
$n<\phi (m)$, then there exists a choice of orientations such that $\Sign(g,M)=
\Sign F=\Sign(F\pitchfork F)$.
Category:57S17 |