Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 57 ( Manifolds and cell complexes )

  Expand all        Collapse all Results 26 - 50 of 65

26. CMB 2009 (vol 52 pp. 257)

Ikeda, Toru
Essential Surfaces in Graph Link Exteriors
An irreducible graph manifold $M$ contains an essential torus if it is not a special Seifert manifold. Whether $M$ contains a closed essential surface of negative Euler characteristic or not depends on the difference of Seifert fibrations from the two sides of a torus system which splits $M$ into Seifert manifolds. However, it is not easy to characterize geometrically the class of irreducible graph manifolds which contain such surfaces. This article studies this problem in the case of graph link exteriors.

Keywords:Graph link, Graph manifold, Seifert manifold, Essential surface

27. CMB 2008 (vol 51 pp. 508)

Cavicchioli, Alberto; Spaggiari, Fulvia
A Result in Surgery Theory
We study the topological $4$-dimensional surgery problem for a closed connected orientable topological $4$-manifold $X$ with vanishing second homotopy and $\pi_1(X)\cong A * F(r)$, where $A$ has one end and $F(r)$ is the free group of rank $r\ge 1$. Our result is related to a theorem of Krushkal and Lee, and depends on the validity of the Novikov conjecture for such fundamental groups.

Keywords:four-manifolds, homotopy type, obstruction theory, homology with local coefficients, surgery, normal invariant, assembly map
Categories:57N65, 57R67, 57Q10

28. CMB 2008 (vol 51 pp. 535)

Csorba, Péter
On the Simple $\Z_2$-homotopy Types of Graph Complexes and Their Simple $\Z_2$-universality
We prove that the neighborhood complex $\N(G)$, the box complex $\B(G)$, the homomorphism complex $\Hom(K_2,G)$and the Lov\'{a}sz complex $\L(G)$ have the same simple $\Z_2$-homotopy type in the sense of Whitehead. We show that these graph complexes are simple $\Z_2$-universal.

Keywords:graph complexes, simple $\Z_2$-homotopy, universality
Categories:57Q10, 05C10, 55P10

29. CMB 2007 (vol 50 pp. 481)

Blanlœil, Vincent; Saeki, Osamu
Concordance des nœuds de dimension $4$
We prove that for a simply connected closed $4$-dimensional manifold, its embeddings into the sphere of dimension $6$ are all concordant to each other.

Keywords:concordance, cobordisme, n{\oe}ud de dimension $4$, chirurgie plongée
Categories:57Q45, 57Q60, 57R40, 57R65, 57N13

30. CMB 2007 (vol 50 pp. 365)

Godinho, Leonor
Equivariant Cohomology of $S^{1}$-Actions on $4$-Manifolds
Let $M$ be a symplectic $4$-dimensional manifold equipped with a Hamiltonian circle action with isolated fixed points. We describe a method for computing its integral equivariant cohomology in terms of fixed point data. We give some examples of these computations.

Categories:53D20, 55N91, 57S15

31. CMB 2007 (vol 50 pp. 390)

Hebda, James J.; Hsieh, Chun-Chung; Tsau, Chichen M.
Linking Number of Singular Links and the Seifert Matrix
We extend the notion of linking number of an ordinary link of two components to that of a singular link with transverse intersections in which case the linking number is a half-integer. We then apply it to simplify the construction of the Seifert matrix, and therefore the Alexander polynomial, in a natural way.


32. CMB 2007 (vol 50 pp. 206)

Golasiński, Marek; Gonçalves, Daciberg Lima
Spherical Space Forms: Homotopy Types and Self-Equivalences for the Group $({\mathbb Z}/a\rtimes{\mathbb Z}/b) \times SL_2\,(\mathbb{F}_p)$
Let $G=({\mathbb Z}/a\rtimes{\mathbb Z}/b) \times \SL_2(\mathbb{F}_p)$, and let $X(n)$ be an $n$-dimensional $CW$-complex of the homotopy type of an $n$-sphere. We study the automorphism group $\Aut (G)$ in order to compute the number of distinct homotopy types of spherical space forms with respect to free and cellular $G$-actions on all $CW$-complexes $X(2dn-1)$, where $2d$ is the period of $G$. The groups ${\mathcal E}(X(2dn-1)/\mu)$ of self homotopy equivalences of space forms $X(2dn-1)/\mu$ associated with free and cellular $G$-actions $\mu$ on $X(2dn-1)$ are determined as well.

Keywords:automorphism group, $CW$-complex, free and cellular $G$-action, group of self homotopy equivalences, Lyndon--Hochschild--Serre spectral sequence, special (linear) group, spherical space form
Categories:55M35, 55P15, 20E22, 20F28, 57S17

33. CMB 2006 (vol 49 pp. 624)

Teragaito, Masakazu
On Non-Integral Dehn Surgeries Creating Non-Orientable Surfaces
For a non-trivial knot in the $3$-sphere, only integral Dehn surgery can create a closed $3$-manifold containing a projective plane. If we restrict ourselves to hyperbolic knots, the corresponding claim for a Klein bottle is still true. In contrast to these, we show that non-integral surgery on a hyperbolic knot can create a closed non-orientable surface of any genus greater than two.

Keywords:knot, Dehn surgery, non-orientable surface

34. CMB 2006 (vol 49 pp. 337)

Berlanga, R.
Homotopy Equivalence and Groups of Measure-Preserving Homeomorphisms
It is shown that the group of compactly supported, measure-preserving homeomorphisms of a connected, second countable manifold is locally contractible in the direct limit topology. Furthermore, this group is weakly homotopically equivalent to the more general group of compactly supported homeomorphisms.

Categories:57S05, 58F11

35. CMB 2006 (vol 49 pp. 55)

Dubois, Jérôme
Non Abelian Twisted Reidemeister Torsion for Fibered Knots
In this article, we give an explicit formula to compute the non abelian twisted sign-deter\-mined Reidemeister torsion of the exterior of a fibered knot in terms of its monodromy. As an application, we give explicit formulae for the non abelian Reidemeister torsion of torus knots and of the figure eight knot.

Keywords:Reidemeister torsion, Fibered knots, Knot groups, Representation space, $\SU$, $\SL$, Adjoint representation, Monodromy
Categories:57Q10, 57M27, 57M25

36. CMB 2006 (vol 49 pp. 36)

Daskalopoulos, Georgios D.; Wentworth, Richard A.
Holomorphic Frames for Weakly Converging Holomorphic Vector Bundles
Using a modification of Webster's proof of the Newlander--Nirenberg theorem, it is shown that, for a weakly convergent sequence of integrable unitary connections on a complex vector bundle over a complex manifold, there is a subsequence of local holomorphic frames that converges strongly in an appropriate Holder class.

Categories:57M50, 58E20, 53C24

37. CMB 2005 (vol 48 pp. 547)

Fehér, L. M.; Némethi, A.; Rimányi, R.
Degeneracy of 2-Forms and 3-Forms
We study some global aspects of differential complex 2-forms and 3-forms on complex manifolds. We compute the cohomology classes represented by the sets of points on a manifold where such a form degenerates in various senses, together with other similar cohomological obstructions. Based on these results and a formula for projective representations, we calculate the degree of the projectivization of certain orbits of the representation $\Lambda^k\C^n$.

Keywords:Classes of degeneracy loci, 2-forms, 3-forms, Thom polynomials, global singularity theory
Categories:14N10, 57R45

38. CMB 2005 (vol 48 pp. 32)

Dąbkowski, Mieczysław K.; Przytycki, Józef H.; Togha, Amir A.
Non-Left-Orderable 3-Manifold Groups
We show that several torsion free 3-manifold groups are not left-orderable. Our examples are groups of cyclic branched coverings of $S^3$ branched along links. The figure eight knot provides simple nontrivial examples. The groups arising in these examples are known as Fibonacci groups which we show not to be left-orderable. Many other examples of non-orderable groups are obtained by taking 3-fold branched covers of $S^3$ branched along various hyperbolic 2-bridge knots. %with various hyperbolic 2-bridge knots as branched sets. The manifold obtained in such a way from the $5_2$ knot is of special interest as it is conjectured to be the hyperbolic 3-manifold with the smallest volume.

Categories:57M25, 57M12, 20F60

39. CMB 2004 (vol 47 pp. 332)

Charette, Virginie; Goldman, William M.; Jones, Catherine A.
Recurrent Geodesics in Flat Lorentz $3$-Manifolds
Let $M$ be a complete flat Lorentz $3$-manifold $M$ with purely hyperbolic holonomy $\Gamma$. Recurrent geodesic rays are completely classified when $\Gamma$ is cyclic. This implies that for any pair of periodic geodesics $\gamma_1$, $\gamma_2$, a unique geodesic forward spirals towards $\gamma_1$ and backward spirals towards $\gamma_2$.

Keywords:geometric structures on low-dimensional manifolds, notions of recurrence
Categories:57M50, 37B20

40. CMB 2004 (vol 47 pp. 439)

Parker, John R.
On the Stable Basin Theorem
The stable basin theorem was introduced by Basmajian and Miner as a key step in their necessary condition for the discreteness of a non-elementary group of complex hyperbolic isometries. In this paper we improve several of Basmajian and Miner's key estimates and so give a substantial improvement on the main inequality in the stable basin theorem.

Categories:22E40, 20H10, 57S30

41. CMB 2004 (vol 47 pp. 60)

Little, Robert D.
Rational Integer Invariants of Regular Cyclic Actions
Let $g\colon M^{2n}\rightarrow M^{2n}$ be a smooth map of period $m>2$ which preserves orientation. Suppose that the cyclic action defined by $g$ is regular and that the normal bundle of the fixed point set $F$ has a $g$-equivariant complex structure. Let $F\pitchfork F$ be the transverse self-intersection of $F$ with itself. If the $g$-signature $\Sign (g,M)$ is a rational integer and $n<\phi (m)$, then there exists a choice of orientations such that $\Sign(g,M)= \Sign F=\Sign(F\pitchfork F)$.


42. CMB 2003 (vol 46 pp. 617)

Pak, Hong Kyung
On Harmonic Theory in Flows
Recently [8], a harmonic theory was developed for a compact contact manifold from the viewpoint of the transversal geometry of contact flow. A contact flow is a typical example of geodesible flow. As a natural generalization of the contact flow, the present paper develops a harmonic theory for various flows on compact manifolds. We introduce the notions of $H$-harmonic and $H^*$-harmonic spaces associated to a H\"ormander flow. We also introduce the notions of basic harmonic spaces associated to a weak basic flow. One of our main results is to show that in the special case of isometric flow these harmonic spaces are isomorphic to the cohomology spaces of certain complexes. Moreover, we find an obstruction for a geodesible flow to be isometric.

Keywords:contact structure, geodesible flow, isometric flow, basic cohomology
Categories:53C20, 57R30

43. CMB 2003 (vol 46 pp. 356)

Ishiwata, Makiko; Przytycki, Józef H.; Yasuhara, Akira
Branched Covers of Tangles in Three-balls
We give an algorithm for a surgery description of a $p$-fold cyclic branched cover of $B^3$ branched along a tangle. We generalize constructions of Montesinos and Akbulut-Kirby.

Keywords:tangle, branched cover, surgery, Heegaard decomposition
Categories:57M25, 57M12

44. CMB 2003 (vol 46 pp. 310)

Wang, Xiaofeng
Second Order Dehn Functions of Asynchronously Automatic Groups
Upper bounds of second order Dehn functions of asynchronously automatic groups are obtained.

Keywords:second order Dehn function, combing, asynchronously automatic group
Categories:20E06, 20F05, 57M05

45. CMB 2003 (vol 46 pp. 265)

Oh, Seungsang
Reducing Spheres and Klein Bottles after Dehn Fillings
Let $M$ be a compact, connected, orientable, irreducible 3-manifold with a torus boundary. It is known that if two Dehn fillings on $M$ along the boundary produce a reducible manifold and a manifold containing a Klein bottle, then the distance between the filling slopes is at most three. This paper gives a remarkably short proof of this result.

Keywords:Dehn filling, reducible, Klein bottle

46. CMB 2003 (vol 46 pp. 122)

Moon, Myoungho
On Certain Finitely Generated Subgroups of Groups Which Split
Define a group $G$ to be in the class $\mathcal{S}$ if for any finitely generated subgroup $K$ of $G$ having the property that there is a positive integer $n$ such that $g^n \in K$ for all $g\in G$, $K$ has finite index in $G$. We show that a free product with amalgamation $A*_C B$ and an $\HNN$ group $A *_C$ belong to $\mathcal{S}$, if $C$ is in $\mathcal{S}$ and every subgroup of $C$ is finitely generated.

Keywords:free product with amalgamation, $\HNN$ group, graph of groups, fundamental group
Categories:20E06, 20E08, 57M07

47. CMB 2002 (vol 45 pp. 231)

Hironaka, Eriko
Erratum:~~The Lehmer Polynomial and Pretzel Links
Erratum to {\it The Lehmer Polynomial and Pretzel Links}, Canad. J. Math. {\bf 44}(2001), 440--451.

Keywords:Alexander polynomial, pretzel knot, Mahler measure, Salem number, Coxeter groups
Categories:57M05, 57M25, 11R04, 11R27

48. CMB 2002 (vol 45 pp. 131)

Przytycki, Józef H.; Rosicki, Witold
The Topological Interpretation of the Core Group of a Surface in $S^4$
We give a topological interpretation of the core group invariant of a surface embedded in $S^4$ \cite{F-R}, \cite{Ro}. We show that the group is isomorphic to the free product of the fundamental group of the double branch cover of $S^4$ with the surface as a branched set, and the infinite cyclic group. We present a generalization for unoriented surfaces, for other cyclic branched covers, and other codimension two embeddings of manifolds in spheres.

Categories:57Q45, 57M12, 57M05

49. CMB 2001 (vol 44 pp. 440)

Hironaka, Eriko
The Lehmer Polynomial and Pretzel Links
In this paper we find a formula for the Alexander polynomial $\Delta_{p_1,\dots,p_k} (x)$ of pretzel knots and links with $(p_1,\dots,p_k, \nega 1)$ twists, where $k$ is odd and $p_1,\dots,p_k$ are positive integers. The polynomial $\Delta_{2,3,7} (x)$ is the well-known Lehmer polynomial, which is conjectured to have the smallest Mahler measure among all monic integer polynomials. We confirm that $\Delta_{2,3,7} (x)$ has the smallest Mahler measure among the polynomials arising as $\Delta_{p_1,\dots,p_k} (x)$.

Keywords:Alexander polynomial, pretzel knot, Mahler measure, Salem number, Coxeter groups
Categories:57M05, 57M25, 11R04, 11R27

50. CMB 2000 (vol 43 pp. 268)

Bogley, W. A.; Gilbert, N. D.; Howie, James
Cockcroft Properties of Thompson's Group
In a study of the word problem for groups, R.~J.~Thompson considered a certain group $F$ of self-homeomorphisms of the Cantor set and showed, among other things, that $F$ is finitely presented. Using results of K.~S.~Brown and R.~Geoghegan, M.~N.~Dyer showed that $F$ is the fundamental group of a finite two-complex $Z^2$ having Euler characteristic one and which is {\em Cockcroft}, in the sense that each map of the two-sphere into $Z^2$ is homologically trivial. We show that no proper covering complex of $Z^2$ is Cockcroft. A general result on Cockcroft properties implies that no proper regular covering complex of any finite two-complex with fundamental group $F$ is Cockcroft.

Keywords:two-complex, covering space, Cockcroft two-complex, Thompson's group
Categories:57M20, 20F38, 57M10, 20F34
   1 2 3    

© Canadian Mathematical Society, 2017 :