Expand all Collapse all | Results 1 - 25 of 33 |
1. CMB 2013 (vol 57 pp. 526)
On $3$-manifolds with Torus or Klein Bottle Category Two A subset $W$ of a closed manifold $M$ is $K$-contractible, where $K$
is a torus or Kleinbottle, if the inclusion $W\rightarrow M$ factors
homotopically through a map to $K$. The image of $\pi_1 (W)$ (for any
base point) is a subgroup of $\pi_1 (M)$ that is isomorphic to a
subgroup of a quotient group of $\pi_1 (K)$. Subsets of $M$ with this
latter property are called $\mathcal{G}_K$-contractible. We obtain a
list of the closed $3$-manifolds that can be covered by two open
$\mathcal{G}_K$-contractible subsets. This is applied to obtain a list
of the possible closed prime $3$-manifolds that can be covered by two
open $K$-contractible subsets.
Keywords:Lusternik--Schnirelmann category, coverings of $3$-manifolds by open $K$-contractible sets Categories:57N10, 55M30, 57M27, 57N16 |
2. CMB 2013 (vol 57 pp. 225)
Small Flag Complexes with Torsion We classify flag complexes on at most $12$ vertices with torsion in
the first homology group. The result is moderately computer-aided.
As a consequence we confirm a folklore conjecture that the smallest
poset whose order complex is homotopy equivalent to the real
projective plane (and also the smallest poset with torsion in the
first homology group) has exactly $13$ elements.
Keywords:clique complex, order complex, homology, torsion, minimal model Categories:55U10, 06A11, 55P40, 55-04, 05-04 |
3. CMB 2013 (vol 57 pp. 245)
Assouad-Nagata Dimension of Wreath Products of Groups Consider the wreath product $H\wr G$, where $H\ne 1$ is finite and $G$ is finitely generated.
We show that the Assouad-Nagata dimension $\dim_{AN}(H\wr G)$ of $H\wr G$
depends on the growth of $G$ as follows:
\par If the growth of $G$ is not bounded by a linear function, then $\dim_{AN}(H\wr G)=\infty$,
otherwise $\dim_{AN}(H\wr G)=\dim_{AN}(G)\leq 1$.
Keywords:Assouad-Nagata dimension, asymptotic dimension, wreath product, growth of groups Categories:54F45, 55M10, 54C65 |
4. CMB 2011 (vol 55 pp. 523)
The Milnor-Stasheff Filtration on Spaces and Generalized Cyclic Maps The concept of $C_{k}$-spaces is introduced, situated at an
intermediate stage between $H$-spaces and $T$-spaces. The
$C_{k}$-space corresponds to the $k$-th Milnor-Stasheff filtration on
spaces. It is proved that a space $X$ is a $C_{k}$-space if and only
if the Gottlieb set $G(Z,X)=[Z,X]$ for any space $Z$ with ${\rm cat}\,
Z\le k$, which generalizes the fact that $X$ is a $T$-space if and
only if $G(\Sigma B,X)=[\Sigma B,X]$ for any space $B$. Some results
on the $C_{k}$-space are generalized to the $C_{k}^{f}$-space for a
map $f\colon A \to X$. Projective spaces, lens spaces and spaces with
a few cells are studied as examples of $C_{k}$-spaces, and
non-$C_{k}$-spaces.
Keywords:Gottlieb sets for maps, L-S category, T-spaces Categories:55P45, 55P35 |
5. CMB 2011 (vol 55 pp. 319)
The Verdier Hypercovering Theorem This note gives a simple cocycle-theoretic proof of the Verdier
hypercovering theorem. This theorem approximates morphisms $[X,Y]$ in the
homotopy category of simplicial sheaves or presheaves by simplicial
homotopy classes of maps, in the case where $Y$ is locally fibrant. The
statement proved in this paper is a generalization of the standard
Verdier hypercovering result in that it is pointed (in a very broad
sense) and there is no requirement for the source object $X$ to be
locally fibrant.
Keywords:simplicial presheaf, hypercover, cocycle Categories:14F35, 18G30, 55U35 |
6. CMB 2011 (vol 55 pp. 48)
Freyd's Generating Hypothesis for Groups with Periodic Cohomology Let $G$ be a finite group, and let $k$ be a field whose characteristic $p$
divides
the order of $G$.
Freyd's generating hypothesis for the stable module category of
$G$ is the statement that a map between finite-dimensional
$kG$-modules in the thick subcategory generated by $k$ factors through a
projective if the induced map on Tate cohomology is trivial. We show that if
$G$
has periodic cohomology, then the generating hypothesis holds if and only if
the Sylow
$p$-subgroup of $G$ is $C_2$ or $C_3$. We also give some other conditions
that are equivalent to the GH
for groups with periodic cohomology.
Keywords:Tate cohomology, generating hypothesis, stable module category, ghost map, principal block, thick subcategory, periodic cohomology Categories:20C20, 20J06, 55P42 |
7. CMB 2010 (vol 53 pp. 730)
A Case When the Fiber of the Double Suspension is the Double Loops on Anick's Space
The fiber $W_{n}$ of the double suspension
$S^{2n-1}\rightarrow\Omega^{2} S^{2n+1}$
is known to have a classifying space $BW_{n}$. An important
conjecture linking the $EHP$ sequence to the homotopy theory of
Moore spaces is that $BW_{n}\simeq\Omega T^{2np+1}(p)$, where $T^{2np+1}(p)$
is Anick's space. This is known if $n=1$. We prove the $n=p$ case
and establish some related properties.
Keywords:double suspension, Anick's space Categories:55P35, 55P10 |
8. CMB 2010 (vol 53 pp. 438)
Near-Homeomorphisms of Nöbeling Manifolds We characterize maps between $n$-dimensional NÃ¶beling manifolds that can be approximated by homeomorphisms.
Keywords:n-dimensional Nöbeling manifold, Z-set unknotting, near-homeomorphism Categories:55M10, 54F45 |
9. CMB 2008 (vol 51 pp. 535)
On the Simple $\Z_2$-homotopy Types of Graph Complexes and Their Simple $\Z_2$-universality We prove that the neighborhood complex $\N(G)$,
the box complex $\B(G)$, the homomorphism complex
$\Hom(K_2,G)$and the Lov\'{a}sz complex $\L(G)$ have the
same simple $\Z_2$-homotopy type in the sense of
Whitehead. We show that these graph complexes
are simple $\Z_2$-universal.
Keywords:graph complexes, simple $\Z_2$-homotopy, universality Categories:57Q10, 05C10, 55P10 |
10. CMB 2008 (vol 51 pp. 310)
Relative Homotopy in Relational Structures The homotopy groups of a finite partially ordered set (poset) can be
described entirely in the context of posets, as shown in a paper by
B. Larose and C. Tardif.
In this paper we describe the relative version of such a
homotopy theory, for pairs $(X,A)$ where $X$ is a poset and $A$ is a
subposet of $X$. We also prove some theorems on the relevant version
of the notion of weak homotopy equivalences for maps of pairs of such
objects. We work in the category of reflexive binary relational
structures which contains the posets as in the work of Larose and
Tardif.
Keywords:binary reflexive relational structure, relative homotopy group, exact sequence, locally finite space, weak homotopy equivalence Categories:55Q05, 54A05;, 18B30 |
11. CMB 2007 (vol 50 pp. 440)
A KÃ¼nneth Theorem for $p$-Adic Groups Let $G_1$ and $G_2$ be $p$-adic groups. We describe a decomposition of
${\rm Ext}$-groups in the category of smooth representations of
$G_1 \times G_2$ in terms of ${\rm Ext}$-groups for $G_1$ and $G_2$.
We comment on ${\rm Ext}^1_G(\pi,\pi)$ for a supercuspidal
representation
$\pi$ of a $p$-adic group $G$. We also consider an example of
identifying
the class, in a suitable ${\rm Ext}^1$, of a Jacquet module of certain
representations of $p$-adic ${\rm GL}_{2n}$.
Categories:22E50, 18G15, 55U25 |
12. CMB 2007 (vol 50 pp. 365)
Equivariant Cohomology of $S^{1}$-Actions on $4$-Manifolds Let $M$ be a symplectic $4$-dimensional manifold equipped with a
Hamiltonian circle action with isolated fixed points. We describe a
method for computing its integral equivariant cohomology in terms of
fixed point data. We give some examples of these computations.
Categories:53D20, 55N91, 57S15 |
13. CMB 2007 (vol 50 pp. 206)
Spherical Space Forms: Homotopy Types and Self-Equivalences for the Group $({\mathbb Z}/a\rtimes{\mathbb Z}/b) \times SL_2\,(\mathbb{F}_p)$ |
Spherical Space Forms: Homotopy Types and Self-Equivalences for the Group $({\mathbb Z}/a\rtimes{\mathbb Z}/b) \times SL_2\,(\mathbb{F}_p)$ Let $G=({\mathbb Z}/a\rtimes{\mathbb Z}/b) \times
\SL_2(\mathbb{F}_p)$, and let $X(n)$ be an $n$-dimensional
$CW$-complex of the homotopy type of an $n$-sphere. We study the
automorphism group $\Aut (G)$ in order to compute the number of
distinct homotopy types of spherical space forms with respect to free
and cellular $G$-actions on all $CW$-complexes $X(2dn-1)$, where $2d$
is the period of $G$. The groups ${\mathcal E}(X(2dn-1)/\mu)$ of self
homotopy equivalences of space forms $X(2dn-1)/\mu$ associated with
free and cellular $G$-actions $\mu$ on $X(2dn-1)$ are determined as
well.
Keywords:automorphism group, $CW$-complex, free and cellular $G$-action, group of self homotopy equivalences, Lyndon--Hochschild--Serre spectral sequence, special (linear) group, spherical space form Categories:55M35, 55P15, 20E22, 20F28, 57S17 |
14. CMB 2006 (vol 49 pp. 407)
Intermediate Model Structures for Simplicial Presheaves This note shows that any set of cofibrations containing the standard
set of generating projective cofibrations determines a cofibrantly
generated proper closed model structure on the category of simplicial
presheaves on a small Grothendieck site, for which the weak
equivalences are the local weak equivalences in the usual sense.
Categories:18G30, 18F20, 55U35 |
15. CMB 2006 (vol 49 pp. 41)
The Ganea and Whitehead Variants of the\\Lusternik--Schnirelmann Category The Lusternik--Schnirelmann category has been described in different ways.
Two major ones, the first by Ganea, the second by Whitehead, are presented here
with a number of variants. The equivalence of these variants relies on
the axioms of Quillen's model category, but also sometimes on an additional
axiom, the so-called ``cube axiom''.
Category:55P30 |
16. CMB 2005 (vol 48 pp. 614)
On Finite-to-One Maps Let $f\colon X\to Y$ be a $\sigma$-perfect $k$-dimensional surjective
map of metrizable spaces such that $\dim Y\leq m$. It is shown that
for every positive integer $p$ with $ p\leq m+k+1$ there exists a
dense $G_{\delta}$-subset ${\mathcal H}(k,m,p)$ of $C(X,\uin^{k+p})$
with the source limitation topology such that each fiber of
$f\triangle g$, $g\in{\mathcal H}(k,m,p)$, contains at most
$\max\{k+m-p+2,1\}$ points. This result
provides a proof the following conjectures of
S. Bogatyi, V. Fedorchuk and J. van Mill.
Let $f\colon X\to Y$ be a $k$-dimensional map between compact
metric spaces with $\dim Y\leq m$. Then:
\begin{inparaenum}[\rm(1)]
\item there exists a map
$h\colon X\to\uin^{m+2k}$ such that $f\triangle h\colon X\to
Y\times\uin^{m+2k}$ is 2-to-one provided $k\geq 1$;
\item there exists a
map $h\colon X\to\uin^{m+k+1}$ such that $f\triangle h\colon X\to
Y\times\uin^{m+k+1}$ is $(k+1)$-to-one.
\end{inparaenum}
Keywords:finite-to-one maps, dimension, set-valued maps Categories:54F45, 55M10, 54C65 |
17. CMB 2004 (vol 47 pp. 321)
Classifying Spaces for Monoidal Categories Through Geometric Nerves The usual constructions of classifying spaces for monoidal categories
produce CW-complexes with
many cells that, moreover, do not have any proper geometric meaning.
However, geometric nerves of
monoidal categories are very handy simplicial sets whose simplices
have
a pleasing geometric
description: they are diagrams with the shape of the 2-skeleton of
oriented standard simplices. The
purpose of this paper is to prove that geometric realizations of
geometric nerves are classifying
spaces for monoidal categories.
Keywords:monoidal category, pseudo-simplicial category,, simplicial set, classifying space, homotopy type Categories:18D10, 18G30, 55P15, 55P35, 55U40 |
18. CMB 2004 (vol 47 pp. 246)
On Maximal $k$-Sections and Related Common Transversals of Convex Bodies Generalizing results from [MM1] referring
to the intersection body $IK$ and
the cross-section body $CK$ of a convex body
$K \subset \sR^d, \, d \ge 2$,
we prove theorems about maximal $k$-sections of convex bodies,
$k \in \{1, \dots, d-1\}$,
and, simultaneously, statements
about common maximal
$(d-1)$- and $1$-transversals of families
of convex bodies.
Categories:52A20, 55Mxx |
19. CMB 2004 (vol 47 pp. 119)
$2$-Primary Exponent Bounds for Lie Groups of Low Rank Exponent information is proven about the Lie groups $SU(3)$,
$SU(4)$, $Sp(2)$, and $G_2$ by showing some power of the $H$-space
squaring map (on a suitably looped connected-cover) is null homotopic.
The upper bounds obtained are $8$, $32$, $64$, and $2^8$ respectively.
This null homotopy is best possible for $SU(3)$ given the number of
loops, off by at most one power of~$2$ for $SU(4)$ and $Sp(2)$, and
off by at most two powers of $2$ for $G_2$.
Keywords:Lie group, exponent Category:55Q52 |
20. CMB 2001 (vol 44 pp. 459)
LS-catÃ©gorie algÃ©brique et attachement de cellules Nous montrons que la A-cat\'egorie d'un espace simplement connexe de
type fini est inf\'erieure ou \'egale \`a $n$ si et seulement si son
mod\`ele d'Adams-Hilton est un r\'etracte homotopique d'une alg\`ebre
diff\'erentielle \`a $n$ \'etages. Nous en d\'eduisons que
l'invariant $\Acat$ augmente au plus de 1 lors de l'attachement
d'une cellule \`a un espace.
We show that the A-category of a simply connected space of finite type
is less than or equal to $n$ if and only if its Adams-Hilton model is
a homotopy retract of an $n$-stage differential algebra. We deduce
from this that the invariant $\Acat$ increases by at most 1 when a
cell is attached to a space.
Keywords:LS-category, strong category, Adams-Hilton models, cell attachments Categories:55M30, 18G55 |
21. CMB 2001 (vol 44 pp. 266)
Extension of Maps to Nilpotent Spaces We show that every compactum has cohomological dimension $1$ with respect
to a finitely generated nilpotent group $G$ whenever it has cohomological
dimension $1$ with respect to the abelianization of $G$. This is applied
to the extension theory to obtain a cohomological dimension theory condition
for a finite-dimensional compactum $X$ for extendability of every map from
a closed subset of $X$ into a nilpotent $\CW$-complex $M$ with finitely
generated homotopy groups over all of $X$.
Keywords:cohomological dimension, extension of maps, nilpotent group, nilpotent space Categories:55M10, 55S36, 54C20, 54F45 |
22. CMB 2001 (vol 44 pp. 80)
Constructing Compacta of Different Extensional Dimensions Applying the Sullivan conjecture we construct compacta of certain
cohomological and extensional dimensions.
Keywords:cohomological dimension, Eilenberg-MacLane complexes, Sullivan conjecture Categories:55M10, 54F45, 55U20 |
23. CMB 2000 (vol 43 pp. 343)
Controlled Homeomorphisms Over Nonpositively Curved Manifolds We obtain a homotopy splitting of the forget control map for
controlled homeomorphisms over closed manifolds of nonpositive
curvature.
Keywords:controlled topology, controlled homeomorphism, nonpositive curvature, Novikov conjectures Categories:57N15, 53C20, 55R65, 57N37 |
24. CMB 2000 (vol 43 pp. 226)
James-Hopf Invariants, Anick's Spaces, and the Double Loops on Odd Primary Moore Spaces Using spaces introduced by Anick, we construct a decomposition into
indecomposable factors of the double loop spaces of odd primary Moore
spaces when the powers of the primes are greater than the first power.
If $n$ is greater than $1$, this implies that the odd primary part
of all the homotopy groups of the $2n+1$ dimensional sphere lifts
to a $\mod p^r$ Moore space.
Categories:55Q52, 55P35 |
25. CMB 2000 (vol 43 pp. 37)
Multiplicative Structure of the Ring $K \bigl( S(T^*\R P^{2n+1}) \bigr)$ We calculate the additive and multiplicative structure of the
ring $K\bigl(S(T^*\R P^{2n+1})\bigr)$ using the eta invariant.
Categories:19L64, 19K56, 55C35 |