1. CMB 2013 (vol 57 pp. 631)
 Sokić, Miodrag

Indicators, Chains, Antichains, Ramsey Property
We introduce two Ramsey classes of finite relational structures. The first
class contains finite structures of the form $(A,(I_{i})_{i=1}^{n},\leq
,(\preceq _{i})_{i=1}^{n})$ where $\leq $ is a total ordering on $A$ and $%
\preceq _{i}$ is a linear ordering on the set $\{a\in A:I_{i}(a)\}$. The
second class contains structures of the form $(A,\leq
,(I_{i})_{i=1}^{n},\preceq )$ where $(A,\leq )$ is a weak ordering and $%
\preceq $ is a linear ordering on $A$ such that $A$ is partitioned by $%
\{a\in A:I_{i}(a)\}$ into maximal chains in the partial ordering $\leq $ and
each $\{a\in A:I_{i}(a)\}$ is an interval with respect to $\preceq $.
Keywords:Ramsey property, linear orderings Categories:05C55, 03C15, 54H20 

2. CMB 2012 (vol 57 pp. 240)
 Bernardes, Nilson C.

Addendum to ``Limit Sets of Typical Homeomorphisms''
Given an integer $n \geq 3$,
a metrizable compact topological $n$manifold $X$ with boundary,
and a finite positive Borel measure $\mu$ on $X$,
we prove that for the typical homeomorphism $f : X \to X$,
it is true that for $\mu$almost every point $x$ in $X$ the restriction of
$f$ (respectively of $f^{1}$) to the omega limit set $\omega(f,x)$
(respectively to the alpha limit set $\alpha(f,x)$) is topologically
conjugate to the universal odometer.
Keywords:topological manifolds, homeomorphisms, measures, Baire category, limit sets Categories:37B20, 54H20, 28C15, 54C35, 54E52 

3. CMB 2012 (vol 56 pp. 709)
 Bartošová, Dana

Universal Minimal Flows of Groups of Automorphisms of Uncountable Structures
It is a wellknown fact, that the greatest ambit for
a topological group $G$ is the Samuel compactification of $G$ with
respect to the right uniformity on $G.$ We apply the original
description by Samuel from 1948 to give a simple computation of the
universal minimal flow for groups of automorphisms of uncountable
structures using FraÃ¯ssÃ© theory and Ramsey theory. This work
generalizes some of the known results about countable structures.
Keywords:universal minimal flows, ultrafilter flows, Ramsey theory Categories:37B05, 03E02, 05D10, 22F50, 54H20 

4. CMB 2011 (vol 56 pp. 442)
 Zelenyuk, Yevhen

Closed Left Ideal Decompositions of $U(G)$
Let $G$ be an infinite discrete group and let $\beta G$ be the
StoneÄech compactification of $G$. We take the points of $Äta
G$ to be the ultrafilters on $G$, identifying the principal
ultrafilters with the points of $G$. The set $U(G)$ of uniform
ultrafilters on $G$ is a closed twosided ideal of $\beta G$. For
every $p\in U(G)$, define $I_p\subseteq\beta G$ by $I_p=\bigcap_{A\in
p}\operatorname{cl} (GU(A))$, where $U(A)=\{p\in U(G):A\in p\}$. We show
that if $G$ is a regular cardinal, then $\{I_p:p\in U(G)\}$ is the
finest decomposition of $U(G)$ into closed left ideals of $\beta G$
such that the corresponding quotient space of $U(G)$ is Hausdorff.
Keywords:StoneÄech compactification, uniform ultrafilter, closed left ideal, decomposition Categories:22A15, 54H20, 22A30, 54D80 

5. CMB 2011 (vol 55 pp. 297)
 Glasner, Eli

The Group $\operatorname{Aut}(\mu)$ is Roelcke Precompact
Following a similar result of Uspenskij on the unitary group of a
separable Hilbert space, we show that, with respect to the lower (or
Roelcke) uniform structure, the Polish group $G=
\operatorname{Aut}(\mu)$ of automorphisms of an atomless standard
Borel probability space $(X,\mu)$ is precompact. We identify the
corresponding compactification as the space of Markov operators on
$L_2(\mu)$ and deduce that the algebra of right and left uniformly
continuous functions, the algebra of weakly almost periodic functions,
and the algebra of Hilbert functions on $G$, i.e., functions on
$G$ arising from unitary representations, all coincide. Again
following Uspenskij, we also conclude that $G$ is totally minimal.
Keywords:Roelcke precompact, unitary group, measure preserving transformations, Markov operators, weakly almost periodic functions Categories:54H11, 22A05, 37B05, 54H20 

6. CMB 2011 (vol 55 pp. 225)
 Bernardes, Nilson C.

Limit Sets of Typical Homeomorphisms
Given an integer $n \geq 3$, a metrizable compact
topological $n$manifold $X$ with boundary, and a finite positive Borel
measure $\mu$ on $X$, we prove that for the typical homeomorphism
$f \colon X \to X$, it is true that for $\mu$almost every point $x$ in $X$
the limit set $\omega(f,x)$ is a Cantor set of Hausdorff dimension zero,
each point of $\omega(f,x)$ has a dense orbit in $\omega(f,x)$, $f$ is
nonsensitive at each point of $\omega(f,x)$, and the function
$a \to \omega(f,a)$ is continuous at $x$.
Keywords:topological manifolds, homeomorphisms, measures, Baire category, limit sets Categories:37B20, 54H20, 28C15, 54C35, 54E52 

7. CMB 1999 (vol 42 pp. 190)
 Gilmer, Patrick M.

Topological Quantum Field Theory and Strong Shift Equivalence
Given a TQFT in dimension $d+1,$ and an infinite cyclic covering of
a closed $(d+1)$dimensional manifold $M$, we define an invariant
taking values in a strong shift equivalence class of matrices. The
notion of strong shift equivalence originated in R.~Williams' work
in symbolic dynamics. The TuraevViro module associated to a TQFT
and an infinite cyclic covering is then given by the Jordan form of
this matrix away from zero. This invariant is also defined if the
boundary of $M$ has an $S^1$ factor and the infinite cyclic cover
of the boundary is standard. We define a variant of a TQFT
associated to a finite group $G$ which has been studied by Quinn.
In this way, we recover a link invariant due to D.~Silver and
S.~Williams. We also obtain a variation on the SilverWilliams
invariant, by using the TQFT associated to $G$ in its unmodified form.
Keywords:knot, link, TQFT, symbolic dynamics, shift equivalence Categories:57R99, 57M99, 54H20 

8. CMB 1997 (vol 40 pp. 448)
 Kaczynski, Tomasz; Mrozek, Marian

Stable index pairs for discrete dynamical systems
A new shorter proof of the existence of index pairs for discrete
dynamical systems is given. Moreover, the index pairs defined in
that proof are stable with respect to small perturbations of the
generating map. The existence of stable index pairs was previously
known in the case of diffeomorphisms and flows generated by smooth
vector fields but it was an open question in the general discrete
case.
Categories:54H20, 54C60, 34C35 
