Expand all Collapse all | Results 1 - 25 of 49 |
1. CMB Online first
On the Hereditary Paracompactness of Locally Compact, Hereditarily Normal Spaces We establish that if it is consistent that there is a
supercompact cardinal, then it is consistent that every locally
compact, hereditarily normal space which does not include a perfect
pre-image of $\omega_1$ is hereditarily paracompact.
Keywords:locally compact, hereditarily normal, paracompact, Axiom R, PFA$^{++}$ Categories:54D35, 54D15, 54D20, 54D45, 03E65, 03E35 |
2. CMB Online first
Free Locally Convex Spaces and the $k$-space Property Let $L(X)$ be the free locally convex space over a Tychonoff space $X$. Then $L(X)$ is a $k$-space if and only if $X$ is a countable discrete space. We prove also that $L(D)$ has uncountable tightness for every uncountable discrete space $D$.
Keywords:free locally convex space, $k$-space, countable tightness Categories:46A03, 54D50, 54A25 |
3. CMB Online first
Characters on $C( X)$ The precise condition on a completely regular space $X$ for every character on
$C(X) $ to be an evaluation at some point in $X$ is that $X$ be
realcompact. Usually, this classical result is obtained relying heavily on
involved (and even nonconstructive) extension arguments. This note provides a
direct proof that is accessible to a large audience.
Keywords:characters, realcompact, evaluation, real-valued continuous functions Categories:54C30, 46E25 |
4. CMB Online first
Topological games and Alster spaces In this paper we study connections between topological games
such
as Rothberger, Menger and compact-open, and relate these games
to
properties involving covers by $G_\delta$ subsets. The results
include:
(1) If Two has a winning strategy in the Menger
game on a regular space $X$, then $X$ is an Alster space.
(2) If Two has a winning strategy in the Rothberger game on a
topological space $X$, then the $G_\delta$-topology on $X$ is
LindelÃ¶f.
(3) The Menger game and the compact-open game are (consistently)
not
dual.
Keywords:topological games, selection principles, Alster spaces, Menger spaces, Rothberger spaces, Menger game, Rothberger game, compact-open game, $G_\delta$-topology Categories:54D20, 54G99, 54A10 |
5. CMB Online first
Indicators, chains, antichains, Ramsey property We introduce two Ramsey classes of finite relational structures. The first
class contains finite structures of the form $(A,(I_{i})_{i=1}^{n},\leq
,(\preceq _{i})_{i=1}^{n})$ where $\leq $ is a total ordering on $A$ and $%
\preceq _{i}$ is a linear ordering on the set $\{a\in A:I_{i}(a)\}$. The
second class contains structures of the form $(A,\leq
,(I_{i})_{i=1}^{n},\preceq )$ where $(A,\leq )$ is a weak ordering and $%
\preceq $ is a linear ordering on $A$ such that $A$ is partitioned by $%
\{a\in A:I_{i}(a)\}$ into maximal chains in the partial ordering $\leq $ and
each $\{a\in A:I_{i}(a)\}$ is an interval with respect to $\preceq $.
Keywords:Ramsey property, linear orderings Categories:05C55, 03C15, 54H20 |
6. CMB 2013 (vol 57 pp. 245)
Assouad-Nagata Dimension of Wreath Products of Groups Consider the wreath product $H\wr G$, where $H\ne 1$ is finite and $G$ is finitely generated.
We show that the Assouad-Nagata dimension $\dim_{AN}(H\wr G)$ of $H\wr G$
depends on the growth of $G$ as follows:
\par If the growth of $G$ is not bounded by a linear function, then $\dim_{AN}(H\wr G)=\infty$,
otherwise $\dim_{AN}(H\wr G)=\dim_{AN}(G)\leq 1$.
Keywords:Assouad-Nagata dimension, asymptotic dimension, wreath product, growth of groups Categories:54F45, 55M10, 54C65 |
7. CMB 2013 (vol 57 pp. 364)
How Lipschitz Functions Characterize the Underlying Metric Spaces Let $X, Y$ be metric spaces and $E, F$ be Banach spaces. Suppose that
both $X,Y$ are realcompact, or both $E,F$ are realcompact.
The zero set of a vector-valued function $f$ is denoted by $z(f)$.
A linear bijection $T$ between local or generalized Lipschitz vector-valued function spaces
is said to preserve zero-set containments or nonvanishing functions
if
\[z(f)\subseteq z(g)\quad\Longleftrightarrow\quad z(Tf)\subseteq z(Tg),\]
or
\[z(f) = \emptyset\quad \Longleftrightarrow\quad z(Tf)=\emptyset,\]
respectively.
Every zero-set containment preserver, and every nonvanishing function preserver when
$\dim E =\dim F\lt +\infty$, is a weighted composition operator
$(Tf)(y)=J_y(f(\tau(y)))$.
We show that the map $\tau\colon Y\to X$ is a locally (little) Lipschitz homeomorphism.
Keywords:(generalized, locally, little) Lipschitz functions, zero-set containment preservers, biseparating maps Categories:46E40, 54D60, 46E15 |
8. CMB 2013 (vol 57 pp. 335)
Alexandroff Manifolds and Homogeneous Continua ny homogeneous,
metric $ANR$-continuum is a $V^n_G$-continuum provided $\dim_GX=n\geq
1$ and $\check{H}^n(X;G)\neq 0$, where $G$ is a principal ideal
domain.
This implies that any homogeneous $n$-dimensional metric $ANR$-continuum is a $V^n$-continuum in the sense of Alexandroff.
We also prove that any finite-dimensional homogeneous metric continuum
$X$, satisfying $\check{H}^n(X;G)\neq 0$ for some group $G$ and $n\geq
1$, cannot be separated by
a compactum $K$ with $\check{H}^{n-1}(K;G)=0$ and $\dim_G K\leq
n-1$. This provides a partial answer to a question of
Kallipoliti-Papasoglu
whether any two-dimensional homogeneous Peano continuum cannot be separated by arcs.
Keywords:Cantor manifold, cohomological dimension, cohomology groups, homogeneous compactum, separator, $V^n$-continuum Categories:54F45, 54F15 |
9. CMB 2012 (vol 57 pp. 240)
Addendum to ``Limit Sets of Typical Homeomorphisms'' Given an integer $n \geq 3$,
a metrizable compact topological $n$-manifold $X$ with boundary,
and a finite positive Borel measure $\mu$ on $X$,
we prove that for the typical homeomorphism $f : X \to X$,
it is true that for $\mu$-almost every point $x$ in $X$ the restriction of
$f$ (respectively of $f^{-1}$) to the omega limit set $\omega(f,x)$
(respectively to the alpha limit set $\alpha(f,x)$) is topologically
conjugate to the universal odometer.
Keywords:topological manifolds, homeomorphisms, measures, Baire category, limit sets Categories:37B20, 54H20, 28C15, 54C35, 54E52 |
10. CMB 2012 (vol 56 pp. 709)
Universal Minimal Flows of Groups of Automorphisms of Uncountable Structures It is a well-known fact, that the greatest ambit for
a topological group $G$ is the Samuel compactification of $G$ with
respect to the right uniformity on $G.$ We apply the original
description by Samuel from 1948 to give a simple computation of the
universal minimal flow for groups of automorphisms of uncountable
structures using FraÃ¯ssÃ© theory and Ramsey theory. This work
generalizes some of the known results about countable structures.
Keywords:universal minimal flows, ultrafilter flows, Ramsey theory Categories:37B05, 03E02, 05D10, 22F50, 54H20 |
11. CMB 2012 (vol 56 pp. 860)
On Countable Dense and $n$-homogeneity We prove that a connected, countable dense homogeneous space is
$n$-homogeneous for every $n$, and strongly 2-homogeneous provided it
is locally connected. We also present an example of a connected and
countable dense homogeneous space which is not strongly
2-homogeneous. This answers Problem 136 of Watson in the Open Problems
in Topology Book in the negative.
Keywords:countable dense homogeneous, connected, $n$-homogeneous, strongly $n$-homogeneous, counterexample Categories:54H15, 54C10, 54F05 |
12. CMB 2011 (vol 56 pp. 292)
Quasisymmetrically Minimal Moran Sets M. Hu and S. Wen considered quasisymmetrically minimal uniform Cantor
sets of Hausdorff dimension $1$, where at the $k$-th set one removes
from each interval $I$ a certain number $n_{k}$ of open subintervals
of length $c_{k}|I|$, leaving $(n_{k}+1)$ closed subintervals of
equal length. Quasisymmetrically Moran sets of Hausdorff dimension $1$
considered in the paper are more general than uniform Cantor sets in
that neither the open subintervals nor the closed subintervals are
required to be of equal length.
Keywords:quasisymmetric, Moran set, Hausdorff dimension Categories:28A80, 54C30 |
13. CMB 2011 (vol 56 pp. 442)
Closed Left Ideal Decompositions of $U(G)$ Let $G$ be an infinite discrete group and let $\beta G$ be the
Stone--Äech compactification of $G$. We take the points of $Äta
G$ to be the ultrafilters on $G$, identifying the principal
ultrafilters with the points of $G$. The set $U(G)$ of uniform
ultrafilters on $G$ is a closed two-sided ideal of $\beta G$. For
every $p\in U(G)$, define $I_p\subseteq\beta G$ by $I_p=\bigcap_{A\in
p}\operatorname{cl} (GU(A))$, where $U(A)=\{p\in U(G):A\in p\}$. We show
that if $|G|$ is a regular cardinal, then $\{I_p:p\in U(G)\}$ is the
finest decomposition of $U(G)$ into closed left ideals of $\beta G$
such that the corresponding quotient space of $U(G)$ is Hausdorff.
Keywords:Stone--Äech compactification, uniform ultrafilter, closed left ideal, decomposition Categories:22A15, 54H20, 22A30, 54D80 |
14. CMB 2011 (vol 56 pp. 92)
On Perturbations of Continuous Maps We give sufficient conditions for the following problem: given a
topological space $X$, a metric space $Y$, a subspace $Z$ of $Y$, and
a continuous map $f$ from $X$ to $Y$, is it possible, by applying to
$f$ an arbitrarily small perturbation, to ensure that $f(X)$ does not
meet $Z$? We also give a relative variant: if $f(X')$ does not meet
$Z$ for a certain subset $X'\subset X$, then we may keep $f$ unchanged
on $X'$. We also develop a variant for continuous sections of
fibrations and discuss some applications to matrix perturbation
theory.
Keywords:perturbation theory, general topology, applications to operator algebras / matrix perturbation theory Category:54F45 |
15. CMB 2011 (vol 56 pp. 424)
Convergent Sequences in Discrete Groups We prove that a finitely generated group contains a
sequence of non-trivial elements that converge to the identity in
every compact homomorphic image if and only if the group is not
virtually abelian. As a consequence of the methods used, we show that a finitely generated
group satisfies Chu duality if and only if it is virtually abelian.
Keywords:Chu duality, Bohr topology Category:54H11 |
16. CMB 2011 (vol 56 pp. 203)
Productively LindelÃ¶f Spaces May All Be $D$ We give easy proofs that (a) the Continuum Hypothesis implies that if
the product of $X$ with every LindelÃ¶f space is LindelÃ¶f, then $X$ is
a $D$-space, and (b) Borel's Conjecture implies every Rothberger space
is Hurewicz.
Keywords:productively LindelÃ¶f, $D$-space, projectively $\sigma$-compact, Menger, Hurewicz Categories:54D20, 54B10, 54D55, 54A20, 03F50 |
17. CMB 2011 (vol 56 pp. 55)
Cliquishness and Quasicontinuity of Two-Variable Maps We study the existence of continuity points for mappings
$f\colon X\times Y\to Z$ whose $x$-sections $Y\ni y\to f(x,y)\in Z$ are
fragmentable and $y$-sections $X\ni x\to f(x,y)\in Z$ are
quasicontinuous, where $X$ is a Baire space and $Z$
is a metric space. For the factor $Y$, we consider two
infinite ``point-picking'' games $G_1(y)$ and $G_2(y)$ defined respectively
for each $y\in Y$ as follows: in the $n$-th
inning, Player I gives a dense set $D_n\subset Y$, respectively, a dense open set $D_n\subset Y$. Then
Player II picks a point $y_n\in D_n$;
II wins if $y$ is in the closure of ${\{y_n:n\in\mathbb N\}}$, otherwise
I wins. It is shown that
(i) $f$ is
cliquish
if II has a winning strategy in $G_1(y)$ for every $y\in Y$, and (ii) $
f$ is quasicontinuous if
the $x$-sections of $f$ are continuous and the set of $y\in Y$
such that II has a winning strategy in $G_2(y)$ is dense in $Y$. Item (i) extends substantially
a result of Debs and item (ii) indicates that
the problem of Talagrand on separately continuous maps has a positive answer for a wide
class of ``small'' compact spaces.
Keywords:cliquishness, fragmentability, joint continuity, point-picking game, quasicontinuity, separate continuity, two variable maps Categories:54C05, 54C08, 54B10, 91A05 |
18. CMB 2011 (vol 55 pp. 297)
The Group $\operatorname{Aut}(\mu)$ is Roelcke Precompact Following a similar result of Uspenskij on the unitary group of a
separable Hilbert space, we show that, with respect to the lower (or
Roelcke) uniform structure, the Polish group $G=
\operatorname{Aut}(\mu)$ of automorphisms of an atomless standard
Borel probability space $(X,\mu)$ is precompact. We identify the
corresponding compactification as the space of Markov operators on
$L_2(\mu)$ and deduce that the algebra of right and left uniformly
continuous functions, the algebra of weakly almost periodic functions,
and the algebra of Hilbert functions on $G$, i.e., functions on
$G$ arising from unitary representations, all coincide. Again
following Uspenskij, we also conclude that $G$ is totally minimal.
Keywords:Roelcke precompact, unitary group, measure preserving transformations, Markov operators, weakly almost periodic functions Categories:54H11, 22A05, 37B05, 54H20 |
19. CMB 2011 (vol 55 pp. 225)
Limit Sets of Typical Homeomorphisms Given an integer $n \geq 3$, a metrizable compact
topological $n$-manifold $X$ with boundary, and a finite positive Borel
measure $\mu$ on $X$, we prove that for the typical homeomorphism
$f \colon X \to X$, it is true that for $\mu$-almost every point $x$ in $X$
the limit set $\omega(f,x)$ is a Cantor set of Hausdorff dimension zero,
each point of $\omega(f,x)$ has a dense orbit in $\omega(f,x)$, $f$ is
non-sensitive at each point of $\omega(f,x)$, and the function
$a \to \omega(f,a)$ is continuous at $x$.
Keywords:topological manifolds, homeomorphisms, measures, Baire category, limit sets Categories:37B20, 54H20, 28C15, 54C35, 54E52 |
20. CMB 2011 (vol 54 pp. 607)
Lightness of Induced Maps and Homeomorphisms An example is given of a map $f$ defined between arcwise connected continua such that $C(f)$ is light and
$2^{f}$ is not light, giving a negative answer to a question of Charatonik and Charatonik. Furthermore, given a positive
integer $n$, we study when the lightness of the induced map $2^{f}$ or $C_n(f)$ implies that $f$ is a
homeomorphism. Finally, we show a result in relation with the lightness of $C(C(f))$.
Keywords:light maps, induced maps, continua, hyperspaces Categories:54B20, 54E40 |
21. CMB 2011 (vol 54 pp. 302)
Structure of the Set of Norm-attaining Functionals on Strictly Convex Spaces Let $X$ be a separable non-reflexive Banach space. We show that there
is no Borel class which contains the set of norm-attaining functionals
for every strictly convex renorming of $X$.
Keywords:separable non-reflexive space, set of norm-attaining functionals, strictly convex norm, Borel class Categories:46B20, 54H05, 46B10 |
22. CMB 2011 (vol 54 pp. 244)
Homogeneous Suslinian Continua A continuum is said to be Suslinian if it does not
contain uncountably many
mutually exclusive non-degenerate subcontinua. Fitzpatrick and
Lelek have shown that a metric Suslinian continuum $X$ has the
property that the set of points at which $X$ is connected im
kleinen is dense in $X$. We extend their result to Hausdorff Suslinian continua
and obtain a number of corollaries. In particular, we prove that a homogeneous,
non-degenerate, Suslinian continuum is a simple closed curve and that each separable,
non-degenerate, homogenous, Suslinian continuum is metrizable.
Keywords:connected im kleinen, homogeneity, Suslinian, locally connected continuum Categories:54F15, 54C05, 54F05, 54F50 |
23. CMB 2010 (vol 54 pp. 193)
Measurements and $G_\delta$-Subsets of Domains
In this paper we study domains, Scott
domains, and the existence of measurements. We
use a space created by D.~K. Burke to show that
there is a Scott domain $P$ for which $\max(P)$ is
a $G_\delta$-subset of $P$ and yet no measurement
$\mu$ on $P$ has $\ker(\mu) = \max(P)$. We also
correct a mistake in the literature asserting that
$[0, \omega_1)$ is a space of this type. We show
that if $P$ is a Scott domain and $X \subseteq
\max(P)$ is a $G_\delta$-subset of $P$, then $X$
has a $G_\delta$-diagonal and is weakly
developable. We show that if $X \subseteq
\max(P)$ is a $G_\delta$-subset of $P$, where
$P$ is a domain but perhaps not a Scott domain,
then $X$ is domain-representable,
first-countable, and is the union of dense,
completely metrizable subspaces. We also
show that there is a domain $P$ such that
$\max(P)$ is the usual space of countable
ordinals and is a $G_\delta$-subset of $P$ in
the Scott topology. Finally we show that the
kernel of a measurement on a Scott domain can
consistently be a normal, separable,
non-metrizable Moore space.
Keywords:domain-representable, Scott-domain-representable, measurement, Burke's space, developable spaces, weakly developable spaces, $G_\delta$-diagonal, Äech-complete space, Moore space, $\omega_1$, weakly developable space, sharp base, AF-complete Categories:54D35, 54E30, 54E52, 54E99, 06B35, 06F99 |
24. CMB 2010 (vol 54 pp. 270)
Sequential Order Under PFA It is shown that it follows from PFA
that there is no
compact scattered space of height greater than $\omega$
in which the sequential order and the scattering heights coincide.
Keywords:sequential order, scattered spaces, PFA Categories:54D55, 03E05, 03E35, 54A20 |
25. CMB 2010 (vol 54 pp. 180)
Additive Families of Low Borel Classes and Borel Measurable Selectors
An important conjecture in the theory of Borel sets in non-separable
metric spaces is whether any point-countable Borel-additive family in
a complete metric space has a $\sigma$-discrete refinement. We confirm the conjecture for
point-countable $\mathbf\Pi_3^0$-additive families, thus generalizing results of
R. W. Hansell and the first author. We apply this result to the
existence of Borel measurable selectors for multivalued mappings of
low Borel complexity, thus answering in the affirmative a particular
version of a question of J. Kaniewski and R. Pol.
Keywords:$\sigma$-discrete refinement, Borel-additive family, measurable selection Categories:54H05, 54E35 |