1. CMB Online first
2. CMB 2014 (vol 58 pp. 158)
3. CMB 2013 (vol 57 pp. 821)
 Jeong, Imsoon; Kim, Seonhui; Suh, Young Jin

Real Hypersurfaces in Complex TwoPlane Grassmannians with Reeb Parallel Structure Jacobi Operator
In this paper we give a characterization of a real hypersurface of
Type~$(A)$ in complex twoplane Grassmannians ${ { {G_2({\mathbb
C}^{m+2})} } }$, which means a
tube over a totally geodesic $G_{2}(\mathbb C^{m+1})$ in
${G_2({\mathbb C}^{m+2})}$, by
the Reeb parallel structure Jacobi operator ${\nabla}_{\xi}R_{\xi}=0$.
Keywords:real hypersurfaces, complex twoplane Grassmannians, Hopf hypersurface, Reeb parallel, structure Jacobi operator Categories:53C40, 53C15 

4. CMB 2011 (vol 56 pp. 306)
5. CMB 2011 (vol 55 pp. 611)
 Özgür, Cihan; Mihai, Adela

Chen Inequalities for Submanifolds of Real Space Forms with a SemiSymmetric NonMetric Connection
In this paper we prove Chen inequalities for submanifolds of real space
forms endowed with a semisymmetric nonmetric connection, i.e., relations
between the mean curvature associated with a semisymmetric nonmetric
connection, scalar and sectional curvatures, Ricci curvatures and the
sectional curvature of the ambient space. The equality cases are considered.
Keywords:real space form, semisymmetric nonmetric connection, Ricci curvature Categories:53C40, 53B05, 53B15 

6. CMB 2011 (vol 55 pp. 114)
7. CMB 2010 (vol 53 pp. 564)
 Watanabe, Yoshiyuki; Suh, Young Jin

On $6$Dimensional Nearly KÃ¤hler Manifolds
In this paper we give a sufficient condition for a complete, simply connected, and strict nearly KÃ¤hler manifold of dimension 6 to be a homogeneous nearly KÃ¤hler manifold. This result was announced in a previous paper by the first author.
Keywords:Nearly KÃ¤hler manifold, 6dimension, Homogeneous, The 1st Chern Class, Einstein manifolds Categories:53C40, 53C15 

8. CMB 2009 (vol 53 pp. 206)
 Atçeken, Mehmet

SemiSlant Submanifolds of an Almost Paracontact Metric Manifold
In this paper, we define and study the geometry of semislant submanifolds of an almost paracontact metric manifold. We give some characterizations for a submanifold to be semislant submanifold to be semislant product and obtain integrability conditions for the distributions involved in the definition of a semislant submanifold.
Keywords:paracontact metric manifold, slant distribution, semislant submanifold, semislant product Categories:53C15, 53C25, 53C40 

9. CMB 2008 (vol 51 pp. 448)
10. CMB 2007 (vol 50 pp. 97)
11. CMB 2006 (vol 49 pp. 134)
12. CMB 1997 (vol 40 pp. 257)