Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 52C35 ( Arrangements of points, flats, hyperplanes [See also 32S22] )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2014 (vol 57 pp. 658)

Thang, Nguyen Tat
Admissibility of Local Systems for some Classes of Line Arrangements
Let $\mathcal{A}$ be a line arrangement in the complex projective plane $\mathbb{P}^2$ and let $M$ be its complement. A rank one local system $\mathcal{L}$ on $M$ is admissible if roughly speaking the cohomology groups $H^m(M,\mathcal{L})$ can be computed directly from the cohomology algebra $H^{*}(M,\mathbb{C})$. In this work, we give a sufficient condition for the admissibility of all rank one local systems on $M$. As a result, we obtain some properties of the characteristic variety $\mathcal{V}_1(M)$ and the Resonance variety $\mathcal{R}_1(M)$.

Keywords:admissible local system, line arrangement, characteristic variety, multinet, resonance variety
Categories:14F99, 32S22, 52C35, 05A18, 05C40, 14H50

2. CMB 2009 (vol 53 pp. 3)

Athanasiadis, Christos A.
A Combinatorial Reciprocity Theorem for Hyperplane Arrangements
Given a nonnegative integer $m$ and a finite collection $\mathcal A$ of linear forms on $\mathcal Q^d$, the arrangement of affine hyperplanes in $\mathcal Q^d$ defined by the equations $\alpha(x) = k$ for $\alpha \in \mathcal A$ and integers $k \in [-m, m]$ is denoted by $\mathcal A^m$. It is proved that the coefficients of the characteristic polynomial of $\mathcal A^m$ are quasi-polynomials in $m$ and that they satisfy a simple combinatorial reciprocity law.

Categories:52C35, 05E99

3. CMB 2009 (vol 52 pp. 342)

Bezdek, K.; Kiss, Gy.
On the X-ray Number of Almost Smooth Convex Bodies and of Convex Bodies of Constant Width
The X-ray numbers of some classes of convex bodies are investigated. In particular, we give a proof of the X-ray Conjecture as well as of the Illumination Conjecture for almost smooth convex bodies of any dimension and for convex bodies of constant width of dimensions $3$, $4$, $5$ and $6$.

Keywords:almost smooth convex body, convex body of constant width, weakly neighbourly antipodal convex polytope, Illumination Conjecture, X-ray number, X-ray Conjecture
Categories:52A20, 52A37, 52C17, 52C35

© Canadian Mathematical Society, 2014 :