1. CMB 2011 (vol 55 pp. 498)
2. CMB 2009 (vol 52 pp. 342)
 Bezdek, K.; Kiss, Gy.

On the Xray Number of Almost Smooth Convex Bodies and of Convex Bodies of Constant Width
The Xray numbers of some classes of convex bodies are investigated.
In particular, we give a proof of the Xray Conjecture as well as
of the Illumination Conjecture for almost smooth convex bodies
of any dimension and for convex bodies of constant width of
dimensions $3$, $4$, $5$ and $6$.
Keywords:almost smooth convex body, convex body of constant width, weakly neighbourly antipodal convex polytope, Illumination Conjecture, Xray number, Xray Conjecture Categories:52A20, 52A37, 52C17, 52C35 

3. CMB 2009 (vol 52 pp. 380)
 Henk, Martin; Cifre, Mar\'\i a A. Hernández

Successive Minima and Radii
In this note we present inequalities relating the successive minima of an
$o$symmetric convex body and the successive inner and outer radii of the
body. These inequalities join known inequalities involving only either
the successive minima or the successive radii.
Keywords:successive minima, inner and outer radii Categories:52A20, 52C07, 52A40, 52A39 

4. CMB 2009 (vol 52 pp. 464)
 Stancu, Alina

Two Volume Product Inequalities and Their Applications
Let $K \subset {\mathbb{R}}^{n+1}$ be a convex body of class $C^2$
with everywhere positive Gauss curvature. We show that there exists
a positive number $\delta (K)$ such that for any $\delta \in (0,
\delta(K))$ we have $\Volu(K_{\delta})\cdot
\Volu((K_{\delta})^{\sstar}) \geq \Volu(K)\cdot \Volu(K^{\sstar}) \geq
\Volu(K^{\delta})\cdot \Volu((K^{\delta})^{\sstar})$, where $K_{\delta}$,
$K^{\delta}$ and $K^{\sstar}$ stand for the convex floating body, the
illumination body, and the polar of $K$, respectively. We derive a
few consequences of these inequalities.
Keywords:affine invariants, convex floating bodies, illumination bodies Categories:52A40, 52A38, 52A20 

5. CMB 2004 (vol 47 pp. 246)
 Makai, Endre; Martini, Horst

On Maximal $k$Sections and Related Common Transversals of Convex Bodies
Generalizing results from [MM1] referring
to the intersection body $IK$ and
the crosssection body $CK$ of a convex body
$K \subset \sR^d, \, d \ge 2$,
we prove theorems about maximal $k$sections of convex bodies,
$k \in \{1, \dots, d1\}$,
and, simultaneously, statements
about common maximal
$(d1)$ and $1$transversals of families
of convex bodies.
Categories:52A20, 55Mxx 

6. CMB 2002 (vol 45 pp. 232)
 Ji, Min; Shen, Zhongmin

On Strongly Convex Indicatrices in Minkowski Geometry
The geometry of indicatrices is the foundation of Minkowski geometry.
A strongly convex indicatrix in a vector space is a strongly convex
hypersurface. It admits a Riemannian metric and has a distinguished
invariant(Cartan) torsion. We prove the existence of nontrivial
strongly convex indicatrices with vanishing mean torsion and discuss
the relationship between the mean torsion and the Riemannian curvature
tensor for indicatrices of Randers type.
Categories:46B20, 53C21, 53A55, 52A20, 53B40, 53A35 
