Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 52 ( Convex and discrete geometry )

  Expand all        Collapse all Results 51 - 54 of 54

51. CMB 1997 (vol 40 pp. 471)

Lawrence, Jim
A short proof of Euler's relation for convex polytopes*
The purposen of this paper is to present a short, self-contained proof of Euler's relation. The ingredients of this proof are (i) the principle of inclusion and exclusion of combinatorics and (ii) the Euler characteristic; a development of the Euler characteristic is included.


52. CMB 1997 (vol 40 pp. 356)

Mazet, Pierre
Principe du maximum et lemme de Schwarz, a valeurs vectorielles
Nous {\'e}tablissons un th{\'e}or{\`e}me pour les fonctions holomorphes {\`a} valeurs dans une partie convexe ferm{\'e}e. Ce th{\'e}or{\`e}me pr{\'e}cise la position des coefficients de Taylor de telles fonctions et peut {\^e}tre consid{\'e}r{\'e} comme une g{\'e}n{\'e}ralisation des in{\'e}galit{\'e}s de Cauchy. Nous montrons alors comment ce th{\'e}or{\`e}me permet de retrouver des versions connues du principe du maximum et d'obtenir de nouveaux r{\'e}sultats sur les applications holomorphes {\`a} valeurs vectorielles.

Keywords:Principe du maximum, lemme de Schwarz, points extr{émaux.
Categories:30C80, 32A30, 46G20, 52A07

53. CMB 1997 (vol 40 pp. 158)

Coxeter, H. S. M.
The trigonometry of hyperbolic tessellations
For positive integers $p$ and $q$ with $(p-2)(q-2) > 4$ there is, in the hyperbolic plane, a group $[p,q]$ generated by reflections in the three sides of a triangle $ABC$ with angles $\pi /p$, $\pi/q$, $\pi/2$. Hyperbolic trigonometry shows that the side $AC$ has length $\psi$, where $\cosh \psi = c/s$, $c = \cos \pi/q$, $s = \sin\pi/p$. For a conformal drawing inside the unit circle with centre $A$, we may take the sides $AB$ and $AC$ to run straight along radii while $BC$ appears as an arc of a circle orthogonal to the unit circle. The circle containing this arc is found to have radius $1/\sinh \psi = s/z$, where $z = \sqrt{c^2-s^2}$, while its centre is at distance $1/\tanh \psi = c/z$ from $A$. In the hyperbolic triangle $ABC$, the altitude from $AB$ to the right-angled vertex $C$ is $\zeta$, where $\sinh\zeta = z$.

Categories:51F15, 51N30, 52A55

54. CMB 1997 (vol 40 pp. 10)

Borwein, Jon; Vanderwerff, Jon
Convex functions on Banach spaces not containing $\ell_1$
There is a sizeable class of results precisely relating boundedness, convergence and differentiability properties of continuous convex functions on Banach spaces to whether or not the space contains an isomorphic copy of $\ell_1$. In this note, we provide constructions showing that the main such results do not extend to natural broader classes of functions.

Categories:46A55, 46B20, 52A41
   1 2 3    

© Canadian Mathematical Society, 2014 :