1. CMB Online first
 Werner, Elisabeth; Ye, Deping

Mixed $f$divergence for multiple pairs of measures
In this paper, the concept of the classical $f$divergence for
a pair of measures is extended to the mixed $f$divergence for
multiple pairs of measures. The mixed $f$divergence provides
a way to measure the difference between multiple pairs of (probability)
measures. Properties for the mixed $f$divergence are established,
such as permutation invariance and symmetry in distributions.
An
AlexandrovFenchel type inequality and an isoperimetric inequality
for the
mixed $f$divergence are proved.
Keywords:AlexandrovFenchel inequality, $f$dissimilarity, $f$divergence, isoperimetric inequality Categories:28XX, 52XX, 60XX 

2. CMB Online first
 Haase, Christian; Hofmann, Jan

Convexnormal (pairs of) polytopes
In 2012 Gubeladze (Adv. Math. 2012)
introduced the notion of $k$convexnormal polytopes to show
that
integral polytopes all of whose edges are longer than $4d(d+1)$
have
the integer decomposition property.
In the first part of this paper we show that for lattice polytopes
there is no difference between $k$ and $(k+1)$convexnormality
(for
$k\geq 3 $) and improve the bound to $2d(d+1)$. In the second
part we
extend the definition to pairs of polytopes. Given two rational
polytopes $P$ and $Q$, where the normal fan of $P$ is a refinement
of
the normal fan of $Q$.
If every edge $e_P$ of $P$ is at least $d$ times as long as the
corresponding face (edge or vertex) $e_Q$ of $Q$, then $(P+Q)\cap
\mathbb{Z}^d
= (P\cap \mathbb{Z}^d ) + (Q \cap \mathbb{Z}^d)$.
Keywords:integer decomposition property, integrally closed, projectively normal, lattice polytopes Categories:52B20, 14M25, 90C10 

3. CMB 2015 (vol 59 pp. 204)
 Spektor, Susanna

Restricted Khinchine Inequality
We prove a Khintchine type inequality under the assumption that
the sum of
Rademacher random variables equals zero. We also show a new
tailbound for a hypergeometric random variable.
Keywords:Khintchine inequality, Kahane inequality, Rademacher random variables, hypergeometric distribution. Categories:46B06, 60E15, 52A23, 46B09 

4. CMB 2014 (vol 58 pp. 561)
 MartinezMaure, Yves

Plane Lorentzian and Fuchsian Hedgehogs
Parts of the BrunnMinkowski theory can be extended to hedgehogs, which are
envelopes of families of affine hyperplanes parametrized by their Gauss map.
F. Fillastre introduced Fuchsian convex bodies, which are the
closed convex sets of LorentzMinkowski space that are globally invariant
under the action of a Fuchsian group. In this paper, we undertake a study of
plane Lorentzian and Fuchsian hedgehogs. In particular, we prove the
Fuchsian analogues of classical geometrical inequalities (analogues which
are reversed as compared to classical ones).
Keywords:Fuchsian and Lorentzian hedgehogs, evolute, duality, convolution, reversed isoperimetric inequality, reversed Bonnesen inequality Categories:52A40, 52A55, 53A04, 53B30 

5. CMB 2014 (vol 57 pp. 658)
 Thang, Nguyen Tat

Admissibility of Local Systems for some Classes of Line Arrangements
Let $\mathcal{A}$ be a line arrangement in the complex
projective plane $\mathbb{P}^2$ and let $M$ be its complement. A rank one
local system $\mathcal{L}$ on $M$ is admissible if roughly speaking
the cohomology groups
$H^m(M,\mathcal{L})$ can be computed directly from the cohomology
algebra $H^{*}(M,\mathbb{C})$. In this work, we give a sufficient
condition for the admissibility of all rank one local systems on
$M$. As a result, we obtain some properties of the characteristic
variety $\mathcal{V}_1(M)$ and the Resonance variety $\mathcal{R}_1(M)$.
Keywords:admissible local system, line arrangement, characteristic variety, multinet, resonance variety Categories:14F99, 32S22, 52C35, 05A18, 05C40, 14H50 

6. CMB 2013 (vol 57 pp. 640)
 Swanepoel, Konrad J.

Equilateral Sets and a SchÃ¼tte Theorem for the $4$norm
A wellknown theorem of SchÃ¼tte (1963) gives a sharp lower bound for
the ratio of the maximum and minimum distances between $n+2$ points in
$n$dimensional Euclidean space.
In this note we adapt BÃ¡rÃ¡ny's elegant proof (1994) of this theorem to the space $\ell_4^n$.
This gives a new proof that the largest cardinality of an equilateral
set in $\ell_4^n$ is $n+1$, and gives a constructive bound for an
interval $(4\varepsilon_n,4+\varepsilon_n)$ of values of $p$ close to $4$ for which it is known that the largest cardinality of an equilateral set in $\ell_p^n$ is $n+1$.
Categories:46B20, 52A21, 52C17 

7. CMB 2012 (vol 57 pp. 42)
 Fonf, Vladimir P.; Zanco, Clemente

Covering the Unit Sphere of Certain Banach Spaces by Sequences of Slices and Balls
e prove that, given any covering of any infinitedimensional Hilbert space $H$ by countably many closed balls, some point exists in $H$ which belongs to infinitely many balls. We do that by characterizing isomorphically polyhedral separable Banach spaces as those whose unit sphere admits a pointfinite covering by the union of countably many slices of the unit ball.
Keywords:point finite coverings, slices, polyhedral spaces, Hilbert spaces Categories:46B20, 46C05, 52C17 

8. CMB 2012 (vol 57 pp. 61)
 Geschke, Stefan

2dimensional Convexity Numbers and $P_4$free Graphs
For $S\subseteq\mathbb R^n$ a set
$C\subseteq S$ is an $m$clique if the convex hull of no $m$element subset of
$C$ is contained in $S$.
We show that there is essentially just one way to construct
a closed set $S\subseteq\mathbb R^2$ without an uncountable
$3$clique that is not the union of countably many convex sets.
In particular, all such sets have the same convexity number;
that is, they
require the same number of convex subsets to cover them.
The main result follows from an analysis of the convex structure of closed
sets in $\mathbb R^2$ without uncountable 3cliques in terms of
clopen, $P_4$free graphs on Polish spaces.
Keywords:convex cover, convexity number, continuous coloring, perfect graph, cograph Categories:52A10, 03E17, 03E75 

9. CMB 2012 (vol 57 pp. 178)
 Rabier, Patrick J.

Quasiconvexity and Density Topology
We prove that if $f:\mathbb{R}^{N}\rightarrow \overline{\mathbb{R}}$ is
quasiconvex and $U\subset \mathbb{R}^{N}$ is open in the density topology, then
$\sup_{U}f=\operatorname{ess\,sup}_{U}f,$ while
$\inf_{U}f=\operatorname{ess\,inf}_{U}f$
if and only if the equality holds when $U=\mathbb{R}^{N}.$ The first (second)
property is typical of lsc (usc) functions and, even when $U$ is an ordinary
open subset, there seems to be no record that they both hold for all
quasiconvex functions.
This property ensures that the pointwise extrema of $f$ on any nonempty
density open subset can be arbitrarily closely approximated by values of $f$
achieved on ``large'' subsets, which may be of relevance in a variety of
issues. To support this claim, we use it to characterize the common points
of continuity, or approximate continuity, of two quasiconvex functions that
coincide away from a set of measure zero.
Keywords:density topology, quasiconvex function, approximate continuity, point of continuity Categories:52A41, 26B05 

10. CMB 2012 (vol 57 pp. 3)
 Adamczak, Radosław; Latała, Rafał; Litvak, Alexander E.; Oleszkiewicz, Krzysztof; Pajor, Alain; TomczakJaegermann, Nicole

A Short Proof of Paouris' Inequality
We give a short proof of a result of G.~Paouris on
the tail behaviour of the Euclidean norm $X$ of an isotropic
logconcave random vector $X\in\mathbb{R}^n,$
stating that for every $t\geq 1$,
\[\mathbb{P} \big( X\geq ct\sqrt n\big)\leq \exp(t\sqrt n).\]
More precisely we show that for any logconcave random vector $X$
and any $p\geq 1$,
\[(\mathbb{E}X^p)^{1/p}\sim \mathbb{E} X+\sup_{z\in
S^{n1}}(\mathbb{E} \langle
z,X\rangle^p)^{1/p}.\]
Keywords:logconcave random vectors, deviation inequalities Categories:46B06, 46B09, 52A23 

11. CMB 2011 (vol 55 pp. 498)
12. CMB 2011 (vol 55 pp. 697)
 Borwein, Jonathan M.; Vanderwerff, Jon

Constructions of Uniformly Convex Functions
We give precise conditions under which the composition
of a norm with a convex function yields a
uniformly convex function on a Banach space.
Various applications are given to functions of power type.
The results are dualized to study uniform smoothness
and several examples are provided.
Keywords:convex function, uniformly convex function, uniformly smooth function, power type, Fenchel conjugate, composition, norm Categories:52A41, 46G05, 46N10, 49J50, 90C25 

13. CMB 2011 (vol 55 pp. 767)
 Martini, Horst; Wu, Senlin

On Zindler Curves in Normed Planes
We extend the notion of Zindler curve from the Euclidean plane to
normed planes. A characterization of Zindler curves for general
normed planes is given, and the relation between Zindler curves and
curves of constant areahalving distances in such planes is
discussed.
Keywords:rc length, areahalving distance, Birkhoff orthogonality, convex curve, halving pair, halving distance, isosceles orthogonality, midpoint curve, Minkowski plane, normed plane, Zindler curve Categories:52A21, 52A10, 46C15 

14. CMB 2011 (vol 55 pp. 487)
15. CMB 2011 (vol 55 pp. 98)
 Glied, Svenja

Similarity and Coincidence Isometries for Modules
The groups of (linear) similarity and coincidence isometries of
certain modules $\varGamma$ in $d$dimensional Euclidean space, which
naturally occur in quasicrystallography, are considered. It is shown
that the structure of the factor group of similarity modulo
coincidence isometries is the direct sum of cyclic groups of prime
power orders that divide $d$. In particular, if the dimension $d$ is a
prime number $p$, the factor group is an elementary abelian
$p$group. This generalizes previous results obtained for lattices to
situations relevant in quasicrystallography.
Categories:20H15, 82D25, 52C23 

16. CMB 2011 (vol 54 pp. 726)
 Ostrovskii, M. I.

Auerbach Bases and Minimal Volume Sufficient Enlargements
Let $B_Y$ denote the unit ball of a
normed linear space $Y$. A symmetric, bounded, closed, convex set
$A$ in a finite dimensional normed linear space $X$ is called a
sufficient enlargement for $X$ if, for an arbitrary
isometric embedding of $X$ into a Banach space $Y$, there exists a
linear projection $P\colon Y\to X$ such that $P(B_Y)\subset A$. Each
finite dimensional normed space has a minimalvolume sufficient
enlargement that is a parallelepiped; some spaces have ``exotic''
minimalvolume sufficient enlargements. The main result of the
paper is a characterization of spaces having ``exotic''
minimalvolume sufficient enlargements in terms of Auerbach
bases.
Keywords:Banach space, Auerbach basis, sufficient enlargement Categories:46B07, 52A21, 46B15 

17. CMB 2010 (vol 54 pp. 561)
 Uren, James J.

A Note on Toric Varieties Associated with Moduli Spaces
In this note we give a brief review of the construction of a toric
variety $\mathcal{V}$ coming from a genus $g \geq 2$ Riemann surface
$\Sigma^g$ equipped with a trinion, or pair of pants, decomposition.
This was outlined by J. Hurtubise and L.~C. Jeffrey.
A. Tyurin used this construction on a certain
collection of trinion decomposed surfaces to produce a variety
$DM_g$, the socalled \emph{Delzant model of moduli space}, for
each genus $g.$ We conclude this note with some basic facts about
the moment polytopes of the varieties $\mathcal{V}.$ In particular,
we show that the varieties $DM_g$ constructed by Tyurin, and claimed
to be smooth, are in fact singular for $g \geq 3.$
Categories:14M25, 52B20 

18. CMB 2010 (vol 53 pp. 614)
 Böröczky, Károly J.; Schneider, Rolf

The Mean Width of Circumscribed Random Polytopes
For a given convex body $K$ in ${\mathbb R}^d$, a random polytope
$K^{(n)}$ is defined (essentially) as the intersection of $n$
independent closed halfspaces containing $K$ and having an isotropic
and (in a specified sense) uniform distribution. We prove upper and
lower bounds of optimal orders for the difference of the mean widths
of $K^{(n)}$ and $K$ as $n$ tends to infinity. For a simplicial
polytope $P$, a precise asymptotic formula for the difference of the
mean widths of $P^{(n)}$ and $P$ is obtained.
Keywords:random polytope, mean width, approximation Categories:52A22, 60D05, 52A27 

19. CMB 2010 (vol 53 pp. 394)
 Averkov, Gennadiy

On Nearly Equilateral Simplices and Nearly l_{â} Spaces
By $\textrm{d}(X,Y)$ we denote the (multiplicative) BanachMazur distance between two normed spaces $X$ and $Y.$ Let $X$ be an $n$dimensional normed space with $\textrm{d}(X,\ell_\infty^n) \le 2,$ where $\ell_\infty^n$ stands for $\mathbb{R}^n$ endowed with the norm $\(x_1,\dots,x_n)\_\infty := \max \{x_1,\dots, x_n \}.$ Then every metric space $(S,\rho)$ of cardinality $n+1$ with norm $\rho$ satisfying the condition $\max D / \min D \le 2/ \textrm{d}(X,\ell_\infty^n)$ for $D:=\{ \rho(a,b) : a, b \in S, \ a \ne b\}$ can be isometrically embedded into $X.$
Categories:52A21, 51F99, 52C99 

20. CMB 2009 (vol 53 pp. 3)
 Athanasiadis, Christos A.

A Combinatorial Reciprocity Theorem for Hyperplane Arrangements
Given a nonnegative integer $m$ and a finite collection $\mathcal A$ of
linear forms on $\mathcal Q^d$, the arrangement of affine hyperplanes in
$\mathcal Q^d$ defined by the equations $\alpha(x) = k$ for $\alpha
\in \mathcal A$
and integers $k \in [m, m]$ is denoted by $\mathcal A^m$. It is proved that
the coefficients of the characteristic polynomial of $\mathcal A^m$ are
quasipolynomials in $m$ and that they satisfy a simple combinatorial
reciprocity law.
Categories:52C35, 05E99 

21. CMB 2009 (vol 52 pp. 451)
 Pach, János; Tardos, Gábor; Tóth, Géza

Indecomposable Coverings
We prove that for every $k>1$, there exist $k$fold coverings of the
plane (i) with strips, (ii) with axisparallel rectangles, and
(iii) with homothets of any fixed concave quadrilateral, that cannot
be decomposed into two coverings. We also construct for every
$k>1$ a set of points $P$ and a family of disks $\cal D$ in the
plane, each containing at least $k$ elements of $P$, such that, no
matter how we color the points of $P$ with two colors,
there
exists a disk $D\in{\cal D}$ all of whose points are of the same
color.
Categories:52C15, 05C15 

22. CMB 2009 (vol 52 pp. 327)
 Berman, Leah Wrenn; Bokowski, Jürgen; Grünbaum, Branko; Pisanski, Toma\v{z}

Geometric ``Floral'' Configurations
With an increase in size, configurations of points and lines
in the plane usually become complicated and hard to analyze.
The ``floral'' configurations we are introducing here represent
a new type that makes accessible and visually intelligible
even configurations of considerable size. This is achieved
by combining a large degree of symmetry with a hierarchical
construction. Depending on the details of the interdependence
of these aspects, there are several subtypes that are described
and investigated.
Categories:52C30, 52C99 

23. CMB 2009 (vol 52 pp. 342)
 Bezdek, K.; Kiss, Gy.

On the Xray Number of Almost Smooth Convex Bodies and of Convex Bodies of Constant Width
The Xray numbers of some classes of convex bodies are investigated.
In particular, we give a proof of the Xray Conjecture as well as
of the Illumination Conjecture for almost smooth convex bodies
of any dimension and for convex bodies of constant width of
dimensions $3$, $4$, $5$ and $6$.
Keywords:almost smooth convex body, convex body of constant width, weakly neighbourly antipodal convex polytope, Illumination Conjecture, Xray number, Xray Conjecture Categories:52A20, 52A37, 52C17, 52C35 

24. CMB 2009 (vol 52 pp. 349)
 Campi, Stefano; Gronchi, Paolo

On Projection Bodies of Order One
The projection body of order one $\Pi_1K$ of a convex body $K$ in
$\R^n$ is the body whose support function is, up to a constant, the
average mean width of the orthogonal projections of $K$ onto
hyperplanes through the origin.
The paper contains an inequality for the support function of
$\Pi_1K$, which implies in particular that such a function is
strictly convex, unless $K$ has dimension one or two. Furthermore,
an existence problem related to the reconstruction of a convex body
is discussed to highlight the different behavior of the area
measures of order one and of order $n1$.
Category:52A40 

25. CMB 2009 (vol 52 pp. 361)
 Tóth, Gábor Fejes

A Note on Covering by Convex Bodies
A classical theorem of Rogers states
that for any convex body $K$ in $n$dimensional Euclidean space
there exists a covering of the space by translates of $K$ with
density not exceeding $n\log{n}+n\log\log{n}+5n$. Rogers' theorem
does not say anything about the structure of such a covering. We
show that for sufficiently large values of $n$ the same bound can
be attained by a covering which is the union of $O(\log{n})$
translates of a lattice arrangement of $K$.
Categories:52C07, 52C17 
