Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 51F99 ( None of the above, but in this section )

  Expand all        Collapse all Results 1 - 1 of 1

1. CMB 2010 (vol 53 pp. 394)

Averkov, Gennadiy
On Nearly Equilateral Simplices and Nearly l∞ Spaces
By $\textrm{d}(X,Y)$ we denote the (multiplicative) Banach--Mazur distance between two normed spaces $X$ and $Y.$ Let $X$ be an $n$-dimensional normed space with $\textrm{d}(X,\ell_\infty^n) \le 2,$ where $\ell_\infty^n$ stands for $\mathbb{R}^n$ endowed with the norm $\|(x_1,\dots,x_n)\|_\infty := \max \{|x_1|,\dots, |x_n| \}.$ Then every metric space $(S,\rho)$ of cardinality $n+1$ with norm $\rho$ satisfying the condition $\max D / \min D \le 2/ \textrm{d}(X,\ell_\infty^n)$ for $D:=\{ \rho(a,b) : a, b \in S, \ a \ne b\}$ can be isometrically embedded into $X.$

Categories:52A21, 51F99, 52C99

© Canadian Mathematical Society, 2014 :