Expand all Collapse all | Results 1 - 5 of 5 |
1. CMB 2005 (vol 48 pp. 283)
Enlarged Inclusion of Subdifferentials This paper studies the integration of inclusion of subdifferentials. Under
various verifiable conditions, we obtain that if two proper lower
semicontinuous functions $f$ and $g$ have the subdifferential of $f$
included in the $\gamma$-enlargement of the subdifferential of $g$, then
the difference of those functions is $ \gamma$-Lipschitz over their
effective domain.
Keywords:subdifferential,, directionally regular function,, approximate convex function,, subdifferentially and directionally stable function Categories:49J52, 46N10, 58C20 |
2. CMB 2000 (vol 43 pp. 25)
Subdifferential Regularity of Directionally Lipschitzian Functions Formulas for the Clarke subdifferential are always expressed in the
form of inclusion. The equality form in these formulas generally
requires the functions to be directionally regular. This paper
studies the directional regularity of the general class of
extended-real-valued functions that are directionally Lipschitzian.
Connections with the concept of subdifferential regularity are also
established.
Keywords:subdifferential regularity, directional regularity, directionally Lipschitzian functions Categories:49J52, 58C20, 49J50, 90C26 |
3. CMB 1998 (vol 41 pp. 497)
On the construction of HÃ¶lder and Proximal Subderivatives We construct Lipschitz functions such that for all $s>0$ they are
$s$-H\"older, and so proximally, subdifferentiable only on dyadic
rationals and nowhere else. As applications we construct Lipschitz
functions with prescribed H\"older and approximate subderivatives.
Keywords:Lipschitz functions, HÃ¶lder subdifferential, proximal subdifferential, approximate subdifferential, symmetric subdifferential, HÃ¶lder smooth, dyadic rationals Categories:49J52, 26A16, 26A24 |
4. CMB 1998 (vol 41 pp. 41)
On the Clarke subdifferential of an integral functional on $L_p$, $1\leq p < \infty$ Given an integral functional defined on $L_p$, $1 \leq p <\infty$,
under a growth condition we give an upper bound of the Clarke
directional derivative and we obtain a nice inclusion between the
Clarke subdifferential of the integral functional and the set of
selections of the subdifferential of the integrand.
Keywords:Integral functional, integrand, epi-derivative Categories:28A25, 49J52, 46E30 |
5. CMB 1997 (vol 40 pp. 88)
The multidirectional mean value theorem in Banach spaces Recently, F.~H.~Clarke and Y.~Ledyaev established a
multidirectional mean value theorem applicable to lower
semi-continuous functions on Hilbert spaces, a result which
turns out to be useful in many applications. We develop a
variant of the result applicable to locally Lipschitz functions
on certain Banach spaces, namely those that admit a
${\cal C}^1$-Lipschitz continuous bump function.
Categories:26B05, 49J52 |