Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 47L80 ( Algebras of specific types of operators (Toeplitz, integral, pseudodifferential, etc.) )

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2013 (vol 57 pp. 270)

Didas, Michael; Eschmeier, Jörg
Derivations on Toeplitz Algebras
Let $H^2(\Omega)$ be the Hardy space on a strictly pseudoconvex domain $\Omega \subset \mathbb{C}^n$, and let $A \subset L^\infty(\partial \Omega)$ denote the subalgebra of all $L^\infty$-functions $f$ with compact Hankel operator $H_f$. Given any closed subalgebra $B \subset A$ containing $C(\partial \Omega)$, we describe the first Hochschild cohomology group of the corresponding Toeplitz algebra $\mathcal(B) \subset B(H^2(\Omega))$. In particular, we show that every derivation on $\mathcal{T}(A)$ is inner. These results are new even for $n=1$, where it follows that every derivation on $\mathcal{T}(H^\infty+C)$ is inner, while there are non-inner derivations on $\mathcal{T}(H^\infty+C(\partial \mathbb{B}_n))$ over the unit ball $\mathbb{B}_n$ in dimension $n\gt 1$.

Keywords:derivations, Toeplitz algebras, strictly pseudoconvex domains
Categories:47B47, 47B35, 47L80

2. CMB 2005 (vol 48 pp. 251)

Murphy, G. J.
The Index Theory Associated to a Non-Finite Trace on a $C^\ast$-Algebra
The index theory considered in this paper, a generalisation of the classical Fredholm index theory, is obtained in terms of a non-finite trace on a unital $C^\ast$-algebra. We relate it to the index theory of M.~Breuer, which is developed in a von~Neumann algebra setting, by means of a representation theorem. We show how our new index theory can be used to obtain an index theorem for Toeplitz operators on the compact group $\mathbf{U}(2)$, where the classical index theory does not give any interesting result.

Categories:46L, 47B35, 47L80

© Canadian Mathematical Society, 2014 :