Search results
Search: MSC category 47H09
( Contractiontype mappings, nonexpansive mappings, $A$proper mappings, etc. )
1. CMB Online first
 Alfuraidan, Monther Rashed

The Contraction Principle for Multivalued Mappings on a Modular Metric Space with a Graph
We study the existence of fixed points for contraction multivalued
mappings in modular metric spaces endowed with a graph. The
notion of a modular metric on an arbitrary set and the corresponding
modular spaces, generalizing classical modulars over linear spaces
like Orlicz spaces, were recently introduced. This paper can
be seen as a generalization of Nadler's and Edelstein's fixed
point theorems to modular metric spaces endowed with a graph.
Keywords:fixed point theory, modular metric spaces, multivalued contraction mapping, connected digraph. Categories:47H09, 46B20, 47H10, 47E10 

2. CMB 2014 (vol 58 pp. 297)
 Khamsi, M. A.

Approximate Fixed Point Sequences of Nonlinear Semigroup in Metric Spaces
In this paper, we investigate the common
approximate fixed point sequences of nonexpansive semigroups of
nonlinear mappings $\{T_t\}_{t \geq 0}$, i.e., a family such that
$T_0(x)=x$, $T_{s+t}=T_s(T_t(x))$, where the domain is a metric space
$(M,d)$. In particular we prove that under suitable conditions, the
common approximate fixed point sequences set is the same as the common
approximate fixed point sequences set of two mappings from the family.
Then we use the Ishikawa iteration to construct a common approximate
fixed point sequence of nonexpansive semigroups of nonlinear
mappings.
Keywords:approximate fixed point, fixed point, hyperbolic metric space, Ishikawa iterations, nonexpansive mapping, semigroup of mappings, uniformly convex hyperbolic space Categories:47H09, 46B20, 47H10, 47E10 

3. CMB 1998 (vol 41 pp. 413)
 LlorensFuster, Enrique; Sims, Brailey

The fixed point property in $\lowercase{c_0}$
A closed convex subset of $c_0$ has the fixed point property
($\fpp$) if every nonexpansive self mapping of it has a fixed
point. All nonempty weak compact convex subsets of $c_0$ are
known to have the $\fpp$. We show that closed convex subsets
with a nonempty interior and nonempty convex subsets which are
compact in a topology slightly coarser than the weak topology
may fail to have the $\fpp$.
Categories:47H09, 47H10 
