CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 47G10 ( Integral operators [See also 45P05] )

  Expand all        Collapse all Results 1 - 4 of 4

1. CMB Online first

Erzakova, Nina A.
Measures of Noncompactness in Regular Spaces
Previous results by the author on the connection between three of measures of non-compactness obtained for $L_p$, are extended to regular spaces of measurable functions. An example of advantage in some cases one of them in comparison with another is given. Geometric characteristics of regular spaces are determined. New theorems for $(k,\beta)$-boundedness of partially additive operators are proved.

Keywords:measure of non-compactness, condensing map, partially additive operator, regular space, ideal space
Categories:47H08, 46E30, 47H99, 47G10

2. CMB Online first

Fang, Zhong-Shan; Zhou, Ze-Hua
New Characterizations of the Weighted Composition Operators Between Bloch Type Spaces in the Polydisk
We give some new characterizations for compactness of weighted composition operators $uC_\varphi$ acting on Bloch-type spaces in terms of the power of the components of $\varphi,$ where $\varphi$ is a holomorphic self-map of the polydisk $\mathbb{D}^n,$ thus generalizing the results obtained by Hyvärinen and Lindström in 2012.

Keywords:weighted composition operator, compactness, Bloch type spaces, polydisk, several complex variables
Categories:47B38, 47B33, 32A37, 45P05, 47G10

3. CMB 2011 (vol 56 pp. 593)

Liu, Congwen; Zhou, Lifang
On the $p$-norm of an Integral Operator in the Half Plane
We give a partial answer to a conjecture of Dostanić on the determination of the norm of a class of integral operators induced by the weighted Bergman projection in the upper half plane.

Keywords:Bergman projection, integral operator, $L^p$-norm, the upper half plane
Categories:47B38, 47G10, 32A36

4. CMB 2003 (vol 46 pp. 113)

Lee, Jaesung; Rim, Kyung Soo
Properties of the $\mathcal{M}$-Harmonic Conjugate Operator
We define the $\mathcal{M}$-harmonic conjugate operator $K$ and prove that it is bounded on the nonisotropic Lipschitz space and on $\BMO$. Then we show $K$ maps Dini functions into the space of continuous functions on the unit sphere. We also prove the boundedness and compactness properties of $\mathcal{M}$-harmonic conjugate operator with $L^p$ symbol.

Keywords:$\mathcal{M}$-harmonic conjugate operator
Categories:32A70, 47G10

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/