Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 47B38 ( Operators on function spaces (general) )

  Expand all        Collapse all Results 1 - 12 of 12

1. CMB Online first

Fang, Zhong-Shan; Zhou, Ze-Hua
New Characterizations of the Weighted Composition Operators Between Bloch Type Spaces in the Polydisk
We give some new characterizations for compactness of weighted composition operators $uC_\varphi$ acting on Bloch-type spaces in terms of the power of the components of $\varphi,$ where $\varphi$ is a holomorphic self-map of the polydisk $\mathbb{D}^n,$ thus generalizing the results obtained by Hyvärinen and Lindström in 2012.

Keywords:weighted composition operator, compactness, Bloch type spaces, polydisk, several complex variables
Categories:47B38, 47B33, 32A37, 45P05, 47G10

2. CMB 2011 (vol 56 pp. 593)

Liu, Congwen; Zhou, Lifang
On the $p$-norm of an Integral Operator in the Half Plane
We give a partial answer to a conjecture of Dostanić on the determination of the norm of a class of integral operators induced by the weighted Bergman projection in the upper half plane.

Keywords:Bergman projection, integral operator, $L^p$-norm, the upper half plane
Categories:47B38, 47G10, 32A36

3. CMB 2011 (vol 56 pp. 229)

Arvanitidis, Athanasios G.; Siskakis, Aristomenis G.
Cesàro Operators on the Hardy Spaces of the Half-Plane
In this article we study the Cesàro operator $$ \mathcal{C}(f)(z)=\frac{1}{z}\int_{0}^{z}f(\zeta)\,d\zeta, $$ and its companion operator $\mathcal{T}$ on Hardy spaces of the upper half plane. We identify $\mathcal{C}$ and $\mathcal{T}$ as resolvents for appropriate semigroups of composition operators and we find the norm and the spectrum in each case. The relation of $\mathcal{C}$ and $\mathcal{T}$ with the corresponding Ces\`{a}ro operators on Lebesgue spaces $L^p(\mathbb R)$ of the boundary line is also discussed.

Keywords:Cesàro operators, Hardy spaces, semigroups, composition operators
Categories:47B38, 30H10, 47D03

4. CMB 2010 (vol 53 pp. 466)

Dubarbie, Luis
Separating Maps between Spaces of Vector-Valued Absolutely Continuous Functions
In this paper we give a description of separating or disjointness preserving linear bijections on spaces of vector-valued absolutely continuous functions defined on compact subsets of the real line. We obtain that they are continuous and biseparating in the finite-dimensional case. The infinite-dimensional case is also studied.

Keywords:separating maps, disjointness preserving, vector-valued absolutely continuous functions, automatic continuity
Categories:47B38, 46E15, 46E40, 46H40, 47B33

5. CMB 2008 (vol 51 pp. 481)

Bayart, Frédéric
Universal Inner Functions on the Ball
It is shown that given any sequence of automorphisms $(\phi_k)_k$ of the unit ball $\bn$ of $\cn$ such that $\|\phi_k(0)\|$ tends to $1$, there exists an inner function $I$ such that the family of ``non-Euclidean translates" $(I\circ\phi_k)_k$ is locally uniformly dense in the unit ball of $H^\infty(\bn)$.

Keywords:inner functions, automorphisms of the ball, universality
Categories:32A35, 30D50, 47B38

6. CMB 2007 (vol 50 pp. 172)

Aron, Richard; Gorkin, Pamela
An Infinite Dimensional Vector Space of Universal Functions for $H^\infty$ of the Ball
We show that there exists a closed infinite dimensional subspace of $H^\infty(B^n)$ such that every function of norm one is universal for some sequence of automorphisms of $B^n$.

Categories:47B38, 47B33, 46J10

7. CMB 2005 (vol 48 pp. 409)

Gauthier, P. M.; Xiao, J.
The Existence of Universal Inner Functions on the Unit Ball of $\mathbb{C}^n$
It is shown that there exists an inner function $I$ defined on the unit ball ${\bf B}^n$ of ${\mathbb C}^n$ such that each function holomorphic on ${\bf B}^n$ and bounded by $1$ can be approximated by ``non-Euclidean translates" of $I$.

Keywords:universal inner functions
Categories:32A35, 30D50, 47B38

8. CMB 2004 (vol 47 pp. 456)

Seto, Michio
On the Berger-Coburn-Lebow Problem for Hardy Submodules
In this paper we shall give an affirmative solution to a problem, posed by Berger, Coburn and Lebow, for $C^{\ast}$-algebras on Hardy submodules.

Keywords:Hardy submodules

9. CMB 2004 (vol 47 pp. 49)

Lindström, Mikael; Makhmutov, Shamil; Taskinen, Jari
The Essential Norm of a Bloch-to-$Q_p$ Composition Operator
The $Q_p$ spaces coincide with the Bloch space for $p>1$ and are subspaces of $\BMOA$ for $0
Keywords:Bloch space, little Bloch space, $\BMOA$, $\VMOA$, $Q_p$ spaces,, composition operator, compact operator, essential norm
Categories:47B38, 47B10, 46E40, 46E15

10. CMB 1999 (vol 42 pp. 139)

Bonet, José; Domański, Paweł; Lindström, Mikael
Essential Norm and Weak Compactness of Composition Operators on Weighted Banach Spaces of Analytic Functions
Every weakly compact composition operator between weighted Banach spaces $H_v^{\infty}$ of analytic functions with weighted sup-norms is compact. Lower and upper estimates of the essential norm of continuous composition operators are obtained. The norms of the point evaluation functionals on the Banach space $H_v^{\infty}$ are also estimated, thus permitting to get new characterizations of compact composition operators between these spaces.

Keywords:weighted Banach spaces of holomorphic functions, composition operator, compact operator, weakly compact operator
Categories:47B38, 30D55, 46E15

11. CMB 1998 (vol 41 pp. 129)

Lee, Young Joo
Pluriharmonic symbols of commuting Toeplitz type operators on the weighted Bergman spaces
A class of Toeplitz type operators acting on the weighted Bergman spaces of the unit ball in the $n$-dimensional complex space is considered and two pluriharmonic symbols of commuting Toeplitz type operators are completely characterized.

Keywords:Pluriharmonic functions, Weighted Bergman spaces, Toeplitz type operators.
Categories:47B38, 32A37

12. CMB 1997 (vol 40 pp. 193)

Kucerovsky, Dan
Finite rank operators and functional calculus on Hilbert modules over abelian $C^{\ast}$-algebras
We consider the problem: If $K$ is a compact normal operator on a Hilbert module $E$, and $f\in C_0(\Sp K)$ is a function which is zero in a neighbourhood of the origin, is $f(K)$ of finite rank? We show that this is the case if the underlying $C^{\ast}$-algebra is abelian, and that the range of $f(K)$ is contained in a finitely generated projective submodule of $E$.

Categories:55R50, 47A60, 47B38

© Canadian Mathematical Society, 2014 :