Expand all Collapse all | Results 1 - 9 of 9 |
1. CMB Online first
A Sharp Constant for the Bergman Projection For the Bergman projection operator $P$ we prove that
\begin{equation*}
\|P\colon L^1(B,d\lambda)\rightarrow B_1\| = \frac {(2n+1)!}{n!}.
\end{equation*}
Here $\lambda$ stands for the hyperbolic metric in the unit ball $B$ of
$\mathbb{C}^n$, and $B_1$ denotes the Besov space with an adequate
semi--norm. We also consider a generalization of this result. This generalizes
some recent results due to PerÃ¤lÃ¤.
Keywords:Bergman projections, Besov spaces Categories:45P05, 47B35 |
2. CMB 2013 (vol 57 pp. 270)
Derivations on Toeplitz Algebras Let $H^2(\Omega)$ be the Hardy space on a strictly pseudoconvex domain $\Omega \subset
\mathbb{C}^n$,
and let $A \subset L^\infty(\partial \Omega)$ denote the subalgebra of all $L^\infty$-functions $f$
with compact Hankel operator $H_f$. Given any closed subalgebra $B \subset A$ containing $C(\partial \Omega)$,
we describe the first Hochschild cohomology group of the
corresponding Toeplitz algebra $\mathcal(B) \subset B(H^2(\Omega))$.
In particular, we show that every derivation on $\mathcal{T}(A)$ is inner. These results are new even for $n=1$,
where it follows that every derivation on $\mathcal{T}(H^\infty+C)$ is inner, while there are non-inner
derivations on $\mathcal{T}(H^\infty+C(\partial \mathbb{B}_n))$ over
the unit ball $\mathbb{B}_n$ in dimension $n\gt 1$.
Keywords:derivations, Toeplitz algebras, strictly pseudoconvex domains Categories:47B47, 47B35, 47L80 |
3. CMB 2011 (vol 55 pp. 441)
Univalently Induced, Closed Range, Composition Operators on the Bloch-type Spaces While there is a large variety of univalently induced closed range
composition operators on the Bloch space,
we show that the only univalently induced, closed range, composition
operators on the Bloch-type spaces $B^{\alpha}$ with $\alpha \ne 1$
are the ones induced by a disc automorphism.
Keywords:composition operators, Bloch-type spaces, closed range, univalent Categories:47B35, 32A18 |
4. CMB 2011 (vol 54 pp. 255)
On an Identity due to Bump and Diaconis, and Tracy and Widom
A classical question for a Toeplitz matrix with given symbol is how to
compute asymptotics for the determinants of its reductions to finite
rank. One can also consider how those asymptotics are affected when
shifting an initial set of rows and columns (or, equivalently,
asymptotics of their minors). Bump and Diaconis
obtained a formula for such shifts involving Laguerre polynomials and
sums over symmetric groups. They also showed how the Heine identity
extends for such minors, which makes this question relevant to Random
Matrix Theory. Independently, Tracy and Widom
used the Wiener-Hopf factorization to
express those shifts in terms of products of infinite matrices. We
show directly why those two expressions are equal and uncover some
structure in both formulas that was unknown to their authors. We
introduce a mysterious differential operator on symmetric functions
that is very similar to vertex operators. We show that the
Bump-Diaconis-Tracy-Widom identity is a differentiated version of the
classical Jacobi-Trudi identity.
Keywords:Toeplitz matrices, Jacobi-Trudi identity, SzegÅ limit theorem, Heine identity, Wiener-Hopf factorization Categories:47B35, 05E05, 20G05 |
5. CMB 2005 (vol 48 pp. 607)
Toeplitz Algebras and Extensions of\\Irrational Rotation Algebras For a given irrational number $\theta$, we define Toeplitz operators with
symbols in the irrational rotation algebra ${\mathcal A}_\theta$,
and we show that the $C^*$-algebra $\mathcal T({\mathcal
A}_\theta)$ generated by these Toeplitz operators is an extension
of ${\mathcal A}_\theta$ by the algebra of compact operators. We
then use these extensions to explicitly exhibit generators of the
group $KK^1({\mathcal A}_\theta,\mathbb C)$. We also prove an
index theorem for $\mathcal T({\mathcal A}_\theta)$ that
generalizes the standard index theorem for Toeplitz operators on
the circle.
Keywords:Toeplitz operators, irrational rotation algebras, index theory Categories:47B35, 46L80 |
6. CMB 2005 (vol 48 pp. 251)
The Index Theory Associated to a Non-Finite Trace on a $C^\ast$-Algebra The index theory considered in this paper, a
generalisation of the classical Fredholm index theory, is obtained
in terms of a non-finite trace on a unital $C^\ast$-algebra. We relate
it to the index theory of M.~Breuer, which is developed in a
von~Neumann algebra setting, by means of a representation theorem.
We show how our new index theory can be used to obtain an index
theorem for Toeplitz operators on the compact group $\mathbf{U}(2)$,
where the classical index theory does not give any interesting result.
Categories:46L, 47B35, 47L80 |
7. CMB 2002 (vol 45 pp. 309)
Joint Mean Oscillation and Local Ideals in the Toeplitz Algebra II: Local Commutivity and Essential Commutant |
Joint Mean Oscillation and Local Ideals in the Toeplitz Algebra II: Local Commutivity and Essential Commutant A well-known theorem of Sarason [11] asserts that if $[T_f,T_h]$ is
compact for every $h \in H^\infty$, then $f \in H^\infty + C(T)$.
Using local analysis in the full Toeplitz algebra $\calT = \calT
(L^\infty)$, we show that the membership $f \in H^\infty + C(T)$ can
be inferred from the compactness of a much smaller collection of
commutators $[T_f,T_h]$. Using this strengthened result and a theorem
of Davidson [2], we construct a proper $C^\ast$-subalgebra $\calT
(\calL)$ of $\calT$ which has the same essential commutant as that of
$\calT$. Thus the image of $\calT (\calL)$ in the Calkin algebra does
not satisfy the double commutant relation [12], [1]. We will also
show that no {\it separable} subalgebra $\calS$ of $\calT$ is capable
of conferring the membership $f \in H^\infty + C(T)$ through the
compactness of the commutators $\{[T_f,S] : S \in \calS\}$.
Categories:46H10, 47B35, 47C05 |
8. CMB 1998 (vol 41 pp. 196)
Brown-Halmos type theorems of weighted Toeplitz operators The spectra of the Toeplitz operators on the weighted Hardy space
$H^2(Wd\th/2\pi)$ and the Hardy space $H^p(d\th/2\pi)$, and the
singular integral operators on the Lebesgue space $L^2(d\th/2\pi)$
are studied. For example, the theorems of Brown-Halmos type and
Hartman-Wintner type are studied.
Keywords:Toeplitz operator, singular integral, operator, weighted Hardy space, spectrum. Category:47B35 |
9. CMB 1998 (vol 41 pp. 240)
On certain $K$-groups associated with minimal flows It is known that the Toeplitz algebra associated with any flow
which is both minimal and uniquely ergodic always has a trivial
$K_1$-group. We show in this note that if the unique ergodicity is
dropped, then such $K_1$-group can be non-trivial. Therefore, in
the general setting of minimal flows, even the $K$-theoretical
index is not sufficient for the classification of Toeplitz
operators which are invertible modulo the commutator ideal.
Categories:46L80, 47B35, 47C15 |