Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 47B10 ( Operators belonging to operator ideals (nuclear, $p$-summing, in the Schatten-von Neumann classes, etc.) [See also 47L20] )

  Expand all        Collapse all Results 1 - 7 of 7

1. CMB 2010 (vol 54 pp. 21)

Bouali, S.; Ech-chad, M.
Generalized D-symmetric Operators II
Let $H$ be a separable, infinite-dimensional, complex Hilbert space and let $A, B\in{\mathcal L }(H)$, where ${\mathcal L}(H)$ is the algebra of all bounded linear operators on $H$. Let $\delta_{AB}\colon {\mathcal L}(H)\rightarrow {\mathcal L}(H)$ denote the generalized derivation $\delta_{AB}(X)=AX-XB$. This note will initiate a study on the class of pairs $(A,B)$ such that $\overline{{\mathcal R}(\delta_{AB})}= \overline{{\mathcal R}(\delta_{A^{\ast}B^{\ast}})}$.

Keywords:generalized derivation, adjoint, D-symmetric operator, normal operator
Categories:47B47, 47B10, 47A30

2. CMB 2008 (vol 51 pp. 67)

Kalton, Nigel; Sukochev, Fyodor
Rearrangement-Invariant Functionals with Applications to Traces on Symmetrically Normed Ideals
We present a construction of singular rearrangement invariant functionals on Marcinkiewicz function/operator spaces. The functionals constructed differ from all previous examples in the literature in that they fail to be symmetric. In other words, the functional $\phi$ fails the condition that if $x\pprec y$ (Hardy-Littlewood-Polya submajorization) and $0\leq x,y$, then $0\le \phi(x)\le \phi(y).$ We apply our results to singular traces on symmetric operator spaces (in particular on symmetrically-normed ideals of compact operators), answering questions raised by Guido and Isola.

Categories:46L52, 47B10, 46E30

3. CMB 2007 (vol 50 pp. 85)

Han, Deguang
Classification of Finite Group-Frames and Super-Frames
Given a finite group $G$, we examine the classification of all frame representations of $G$ and the classification of all $G$-frames, \emph{i.e.,} frames induced by group representations of $G$. We show that the exact number of equivalence classes of $G$-frames and the exact number of frame representations can be explicitly calculated. We also discuss how to calculate the largest number $L$ such that there exists an $L$-tuple of strongly disjoint $G$-frames.

Keywords:frames, group-frames, frame representations, disjoint frames
Categories:42C15, 46C05, 47B10

4. CMB 2004 (vol 47 pp. 144)

Xia, Jingbo
On the Uniqueness of Wave Operators Associated With Non-Trace Class Perturbations
Voiculescu has previously established the uniqueness of the wave operator for the problem of $\mathcal{C}^{(0)}$-perturbation of commuting tuples of self-adjoint operators in the case where the norm ideal $\mathcal{C}$ has the property $\lim_{n\rightarrow\infty} n^{-1/2}\|P_n\|_{\mathcal{C}}=0$, where $\{P_n\}$ is any sequence of orthogonal projections with $\rank(P_n)=n$. We prove that the same uniqueness result holds true so long as $\mathcal{C}$ is not the trace class. (It is well known that there is no such uniqueness in the case of trace-class perturbation.)

Categories:47A40, 47B10

5. CMB 2004 (vol 47 pp. 49)

Lindström, Mikael; Makhmutov, Shamil; Taskinen, Jari
The Essential Norm of a Bloch-to-$Q_p$ Composition Operator
The $Q_p$ spaces coincide with the Bloch space for $p>1$ and are subspaces of $\BMOA$ for $0
Keywords:Bloch space, little Bloch space, $\BMOA$, $\VMOA$, $Q_p$ spaces,, composition operator, compact operator, essential norm
Categories:47B38, 47B10, 46E40, 46E15

6. CMB 1999 (vol 42 pp. 162)

Cobos, Fernando; Kühn, Thomas
Lorentz-Schatten Classes and Pointwise Domination of Matrices
We investigate pointwise domination property in operator spaces generated by Lorentz sequence spaces.


7. CMB 1999 (vol 42 pp. 87)

Kittaneh, Fuad
Some norm inequalities for operators
Let $A_i$, $B_i$ and $X_i$ $(i=1, 2, \dots, n)$ be operators on a separable Hilbert space. It is shown that if $f$ and $g$ are nonnegative continuous functions on $[0,\infty)$ which satisfy the relation $f(t)g(t) =t$ for all $t$ in $[0,\infty)$, then $$ \Biglvert \,\Bigl|\sum^n_{i=1} A^*_i X_i B_i \Bigr|^r \,\Bigrvert^2 \leq \Biglvert \Bigl( \sum^n_{i=1} A^*_i f (|X^*_i|)^2 A_i \Bigr)^r \Bigrvert \, \Biglvert \Bigl( \sum^n_{i=1} B^*_i g (|X_i|)^2 B_i \Bigr)^r \Bigrvert $$ for every $r>0$ and for every unitarily invariant norm. This result improves some known Cauchy-Schwarz type inequalities. Norm inequalities related to the arithmetic-geometric mean inequality and the classical Heinz inequalities are also obtained.

Keywords:Unitarily invariant norm, positive operator, arithmetic-geometric mean inequality, Cauchy-Schwarz inequality, Heinz inequality
Categories:47A30, 47B10, 47B15, 47B20

© Canadian Mathematical Society, 2015 :