CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 47A60 ( Functional calculus )

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2012 (vol 57 pp. 145)

Mustafayev, H. S.
The Essential Spectrum of the Essentially Isometric Operator
Let $T$ be a contraction on a complex, separable, infinite dimensional Hilbert space and let $\sigma \left( T\right) $ (resp. $\sigma _{e}\left( T\right) )$ be its spectrum (resp. essential spectrum). We assume that $T$ is an essentially isometric operator, that is $I_{H}-T^{\ast }T$ is compact. We show that if $D\diagdown \sigma \left( T\right) \neq \emptyset ,$ then for every $f$ from the disc-algebra, \begin{equation*} \sigma _{e}\left( f\left( T\right) \right) =f\left( \sigma _{e}\left( T\right) \right) , \end{equation*} where $D$ is the open unit disc. In addition, if $T$ lies in the class $ C_{0\cdot }\cup C_{\cdot 0},$ then \begin{equation*} \sigma _{e}\left( f\left( T\right) \right) =f\left( \sigma \left( T\right) \cap \Gamma \right) , \end{equation*} where $\Gamma $ is the unit circle. Some related problems are also discussed.

Keywords:Hilbert space, contraction, essentially isometric operator, (essential) spectrum, functional calculus
Categories:47A10, 47A53, 47A60, 47B07

2. CMB 1997 (vol 40 pp. 193)

Kucerovsky, Dan
Finite rank operators and functional calculus on Hilbert modules over abelian $C^{\ast}$-algebras
We consider the problem: If $K$ is a compact normal operator on a Hilbert module $E$, and $f\in C_0(\Sp K)$ is a function which is zero in a neighbourhood of the origin, is $f(K)$ of finite rank? We show that this is the case if the underlying $C^{\ast}$-algebra is abelian, and that the range of $f(K)$ is contained in a finitely generated projective submodule of $E$.

Categories:55R50, 47A60, 47B38

© Canadian Mathematical Society, 2014 : https://cms.math.ca/