CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 47A35 ( Ergodic theory [See also 28Dxx, 37Axx] )

  Expand all        Collapse all Results 1 - 2 of 2

1. CMB 2004 (vol 47 pp. 215)

Jaworski, Wojciech
Countable Amenable Identity Excluding Groups
A discrete group $G$ is called \emph{identity excluding\/} if the only irreducible unitary representation of $G$ which weakly contains the $1$-dimensional identity representation is the $1$-dimensional identity representation itself. Given a unitary representation $\pi$ of $G$ and a probability measure $\mu$ on $G$, let $P_\mu$ denote the $\mu$-average $\int\pi(g) \mu(dg)$. The goal of this article is twofold: (1)~to study the asymptotic behaviour of the powers $P_\mu^n$, and (2)~to provide a characterization of countable amenable identity excluding groups. We prove that for every adapted probability measure $\mu$ on an identity excluding group and every unitary representation $\pi$ there exists and orthogonal projection $E_\mu$ onto a $\pi$-invariant subspace such that $s$-$\lim_{n\to\infty}\bigl(P_\mu^n- \pi(a)^nE_\mu\bigr)=0$ for every $a\in\supp\mu$. This also remains true for suitably defined identity excluding locally compact groups. We show that the class of countable amenable identity excluding groups coincides with the class of $\FC$-hypercentral groups; in the finitely generated case this is precisely the class of groups of polynomial growth. We also establish that every adapted random walk on a countable amenable identity excluding group is ergodic.

Categories:22D10, 22D40, 43A05, 47A35, 60B15, 60J50

2. CMB 2000 (vol 43 pp. 157)

El Abdalaoui, El Houcein
A Larger Class of Ornstein Transformations with Mixing Property
We prove that Ornstein transformations are almost surely totally ergodic provided only that the cutting parameter is not bounded. We thus obtain a larger class of Ornstein transformations with the mixing property.

Categories:28D05, 47A35

© Canadian Mathematical Society, 2014 : https://cms.math.ca/