Expand all Collapse all | Results 1 - 4 of 4 |
1. CMB 2012 (vol 57 pp. 145)
The Essential Spectrum of the Essentially Isometric Operator Let $T$ be a contraction on a complex, separable, infinite dimensional
Hilbert space and let $\sigma \left( T\right) $ (resp. $\sigma _{e}\left(
T\right) )$ be its spectrum (resp. essential spectrum). We assume that $T$
is an essentially isometric operator, that is $I_{H}-T^{\ast }T$ is compact.
We show that if $D\diagdown \sigma \left( T\right) \neq \emptyset ,$ then
for every $f$ from the disc-algebra,
\begin{equation*}
\sigma _{e}\left( f\left( T\right) \right) =f\left( \sigma _{e}\left(
T\right) \right) ,
\end{equation*}
where $D$ is the open unit disc. In addition, if $T$ lies in the class
$ C_{0\cdot }\cup C_{\cdot 0},$ then
\begin{equation*}
\sigma _{e}\left( f\left( T\right) \right) =f\left( \sigma \left( T\right)
\cap \Gamma \right) ,
\end{equation*}
where $\Gamma $ is the unit circle. Some related problems are also discussed.
Keywords:Hilbert space, contraction, essentially isometric operator, (essential) spectrum, functional calculus Categories:47A10, 47A53, 47A60, 47B07 |
2. CMB 2010 (vol 54 pp. 141)
Linear Maps on $C^*$-Algebras Preserving the Set of Operators that are Invertible in $\mathcal{A}/\mathcal{I}$ |
Linear Maps on $C^*$-Algebras Preserving the Set of Operators that are Invertible in $\mathcal{A}/\mathcal{I}$
For $C^*$-algebras $\mathcal{A}$ of real rank zero, we describe
linear maps $\phi$ on $\mathcal{A}$ that are surjective up to ideals
$\mathcal{I}$, and $\pi(A)$ is invertible in $\mathcal{A}/\mathcal{I}$ if and only if
$\pi(\phi(A))$ is invertible in $\mathcal{A}/\mathcal{I}$, where $A\in\mathcal{A}$ and
$\pi:\mathcal{A}\to\mathcal{A}/\mathcal{I}$ is the quotient map. We also consider similar
linear maps preserving zero products on the Calkin algebra.
Keywords:preservers, Jordan automorphisms, invertible operators, zero products Categories:47B48, 47A10, 46H10 |
3. CMB 1999 (vol 42 pp. 452)
Finite Rank Operators in Certain Algebras Let $\Alg(\l)$ be the algebra of all bounded linear operators
on a normed linear space $\x$ leaving invariant each member
of the complete lattice of closed subspaces $\l$. We discuss
when the subalgebra of finite rank operators in $\Alg(\l)$ is
non-zero, and give an example which shows this subalgebra may
be zero even for finite lattices. We then give a necessary
and sufficient lattice condition for decomposing a finite rank
operator $F$ into a sum of a rank one operator and an operator
whose range is smaller than that of $F$, each of which lies in
$\Alg(\l)$. This unifies results of Erdos, Longstaff, Lambrou,
and Spanoudakis. Finally, we use the existence of finite rank
operators in certain algebras to characterize the spectra of
Riesz operators (generalizing results of Ringrose and Clauss)
and compute the Jacobson radical for closed algebras of Riesz
operators and $\Alg(\l)$ for various types of lattices.
Categories:47D30, 47A15, 47A10 |
4. CMB 1999 (vol 42 pp. 104)
InstabilitÃ© de vecteurs propres d'opÃ©rateurs linÃ©aires We consider some geometric properties of eigenvectors of linear
operators on infinite dimensional Hilbert space. It is proved that
the property of a family of vectors $(x_n)$ to be eigenvectors
$Tx_n= \lambda_n x_n$ ($\lambda_n \noteq \lambda_k$ for $n\noteq k$)
of a bounded operator $T$ (admissibility property) is very instable
with respect to additive and linear perturbations. For instance,
(1)~for the sequence $(x_n+\epsilon_n v_n)_{n\geq k(\epsilon)}$ to
be admissible for every admissible $(x_n)$ and for a suitable
choice of small numbers $\epsilon_n\noteq 0$ it is necessary and
sufficient that the perturbation sequence be eventually scalar:
there exist $\gamma_n\in \C$ such that $v_n= \gamma_n v_{k}$ for
$n\geq k$ (Theorem~2); (2)~for a bounded operator $A$ to transform
admissible families $(x_n)$ into admissible families $(Ax_n)$ it is
necessary and sufficient that $A$ be left invertible (Theorem~4).
Keywords:eigenvectors, minimal families, reproducing kernels Categories:47A10, 46B15 |