Canadian Mathematical Society
Canadian Mathematical Society
  location:  Publicationsjournals
Search results

Search: MSC category 46N10 ( Applications in optimization, convex analysis, mathematical programming, economics )

  Expand all        Collapse all Results 1 - 3 of 3

1. CMB 2011 (vol 55 pp. 697)

Borwein, Jonathan M.; Vanderwerff, Jon
Constructions of Uniformly Convex Functions
We give precise conditions under which the composition of a norm with a convex function yields a uniformly convex function on a Banach space. Various applications are given to functions of power type. The results are dualized to study uniform smoothness and several examples are provided.

Keywords:convex function, uniformly convex function, uniformly smooth function, power type, Fenchel conjugate, composition, norm
Categories:52A41, 46G05, 46N10, 49J50, 90C25

2. CMB 2005 (vol 48 pp. 283)

Thibault, Lionel; Zagrodny, Dariusz
Enlarged Inclusion of Subdifferentials
This paper studies the integration of inclusion of subdifferentials. Under various verifiable conditions, we obtain that if two proper lower semicontinuous functions $f$ and $g$ have the subdifferential of $f$ included in the $\gamma$-enlargement of the subdifferential of $g$, then the difference of those functions is $ \gamma$-Lipschitz over their effective domain.

Keywords:subdifferential,, directionally regular function,, approximate convex function,, subdifferentially and directionally stable function
Categories:49J52, 46N10, 58C20

3. CMB 2003 (vol 46 pp. 538)

Borwein, Jonathan; Fitzpatrick, Simon; Girgensohn, Roland
Subdifferentials Whose Graphs Are Not Norm$\times$Weak* Closed
In this note we give examples of convex functions whose subdifferentials have unpleasant properties. Particularly, we exhibit a proper lower semicontinuous convex function on a separable Hilbert space such that the graph of its subdifferential is not closed in the product of the norm and bounded weak topologies. We also exhibit a set whose sequential normal cone is not norm closed.

Categories:46N10, 47H05

© Canadian Mathematical Society, 2014 :