CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  Publicationsjournals
Publications        
Search results

Search: MSC category 46L80 ( $K$-theory and operator algebras (including cyclic theory) [See also 18F25, 19Kxx, 46M20, 55Rxx, 58J22] )

  Expand all        Collapse all Results 1 - 18 of 18

1. CMB Online first

De Nitties, Giuseppe; Schulz-Baldes, Hermann
Spectral Flows of Dilations of Fredholm Operators
Given an essentially unitary contraction and an arbitrary unitary dilation of it, there is a naturally associated spectral flow which is shown to be equal to the index of the operator. This result is interpreted in terms of the $K$-theory of an associated mapping cone. It is then extended to connect $\mathbb{Z}_2$ indices of odd symmetric Fredholm operators to a $\mathbb{Z}_2$-valued spectral flow.

Keywords:spectral flow, Fredholm operators, Z2 indices
Categories:19K56, 46L80

2. CMB Online first

Tikuisis, Aaron Peter; Toms, Andrew
On the Structure of Cuntz Semigroups in (Possibly) Nonunital C*-algebras
We examine the ranks of operators in semi-finite $\mathrm{C}^*$-algebras as measured by their densely defined lower semicontinuous traces. We first prove that a unital simple $\mathrm{C}^*$-algebra whose extreme tracial boundary is nonempty and finite contains positive operators of every possible rank, independent of the property of strict comparison. We then turn to nonunital simple algebras and establish criteria that imply that the Cuntz semigroup is recovered functorially from the Murray-von Neumann semigroup and the space of densely defined lower semicontinuous traces. Finally, we prove that these criteria are satisfied by not-necessarily-unital approximately subhomogeneous algebras of slow dimension growth. Combined with results of the first-named author, this shows that slow dimension growth coincides with $\mathcal Z$-stability, for approximately subhomogeneous algebras.

Keywords:nuclear C*-algebras, Cuntz semigroup, dimension functions, stably projectionless C*-algebras, approximately subhomogeneous C*-algebras, slow dimension growth
Categories:46L35, 46L05, 46L80, 47L40, 46L85

3. CMB 2012 (vol 56 pp. 870)

Wei, Changguo
Note on Kasparov Product of $C^*$-algebra Extensions
Using the Dadarlat isomorphism, we give a characterization for the Kasparov product of $C^*$-algebra extensions. A certain relation between $KK(A, \mathcal q(B))$ and $KK(A, \mathcal q(\mathcal k B))$ is also considered when $B$ is not stable and it is proved that $KK(A, \mathcal q(B))$ and $KK(A, \mathcal q(\mathcal k B))$ are not isomorphic in general.

Keywords:extension, Kasparov product, $KK$-group
Category:46L80

4. CMB 2011 (vol 56 pp. 337)

Fan, Qingzhai
Certain Properties of $K_0$-monoids Preserved by Tracial Approximation
We show that the following $K_0$-monoid properties of $C^*$-algebras in the class $\Omega$ are inherited by simple unital $C^*$-algebras in the class $TA\Omega$: (1) weak comparability, (2) strictly unperforated, (3) strictly cancellative.

Keywords:$C^*$-algebra, tracial approximation, $K_0$-monoid
Categories:46L05, 46L80, 46L35

5. CMB 2010 (vol 54 pp. 82)

Emerson, Heath
Lefschetz Numbers for $C^*$-Algebras
Using Poincar\'e duality, we obtain a formula of Lefschetz type that computes the Lefschetz number of an endomorphism of a separable nuclear $C^*$-algebra satisfying Poincar\'e duality and the Kunneth theorem. (The Lefschetz number of an endomorphism is the graded trace of the induced map on $\textrm{K}$-theory tensored with $\mathbb{C}$, as in the classical case.) We then examine endomorphisms of Cuntz--Krieger algebras $O_A$. An endomorphism has an invariant, which is a permutation of an infinite set, and the contracting and expanding behavior of this permutation describes the Lefschetz number of the endomorphism. Using this description, we derive a closed polynomial formula for the Lefschetz number depending on the matrix $A$ and the presentation of the endomorphism.

Categories:19K35, 46L80

6. CMB 2009 (vol 53 pp. 37)

Choi, Man-Duen; Latrémolière, Frédéric
$C^*$-Crossed-Products by an Order-Two Automorphism
We describe the representation theory of $C^*$-crossed-products of a unital $C^*$-algebra A by the cyclic group of order~2. We prove that there are two main types of irreducible representations for the crossed-product: those whose restriction to A is irreducible and those who are the sum of two unitarily unequivalent representations of~A. We characterize each class in term of the restriction of the representations to the fixed point $C^*$-subalgebra of~A. We apply our results to compute the K-theory of several crossed-products of the free group on two generators.

Categories:46L55, 46L80

7. CMB 2009 (vol 52 pp. 598)

Moreno, M. A.; Nicola, J.; Pardo, E.; Thomas, H.
Numerical Semigroups That Are Not Intersections of $d$-Squashed Semigroups
We say that a numerical semigroup is \emph{$d$-squashed} if it can be written in the form $$ S=\frac 1 N \langle a_1,\dots,a_d \rangle \cap \mathbb{Z}$$ for $N,a_1,\dots,a_d$ positive integers with $\gcd(a_1,\dots, a_d)=1$. Rosales and Urbano have shown that a numerical semigroup is 2-squashed if and only if it is proportionally modular. Recent works by Rosales \emph{et al.} give a concrete example of a numerical semigroup that cannot be written as an intersection of $2$-squashed semigroups. We will show the existence of infinitely many numerical semigroups that cannot be written as an intersection of $2$-squashed semigroups. We also will prove the same result for $3$-squashed semigroups. We conjecture that there are numerical semigroups that cannot be written as the intersection of $d$-squashed semigroups for any fixed $d$, and we prove some partial results towards this conjecture.

Keywords:numerical semigroup, squashed semigroup, proportionally modular semigroup
Categories:20M14, 06F05, 46L80

8. CMB 2008 (vol 51 pp. 545)

Ionescu, Marius; Watatani, Yasuo
$C^{\ast}$-Algebras Associated with Mauldin--Williams Graphs
A Mauldin--Williams graph $\mathcal{M}$ is a generalization of an iterated function system by a directed graph. Its invariant set $K$ plays the role of the self-similar set. We associate a $C^{*}$-algebra $\mathcal{O}_{\mathcal{M}}(K)$ with a Mauldin--Williams graph $\mathcal{M}$ and the invariant set $K$, laying emphasis on the singular points. We assume that the underlying graph $G$ has no sinks and no sources. If $\mathcal{M}$ satisfies the open set condition in $K$, and $G$ is irreducible and is not a cyclic permutation, then the associated $C^{*}$-algebra $\mathcal{O}_{\mathcal{M}}(K)$ is simple and purely infinite. We calculate the $K$-groups for some examples including the inflation rule of the Penrose tilings.

Categories:46L35, 46L08, 46L80, 37B10

9. CMB 2007 (vol 50 pp. 460)

Spielberg, Jack
Weak Semiprojectivity for Purely Infinite $C^*$-Algebras
We prove that a separable, nuclear, purely infinite, simple $C^*$-algebra satisfying the universal coefficient theorem is weakly semiprojective if and only if its $K$-groups are direct sums of cyclic groups.

Keywords:Kirchberg algebra, weak semiprojectivity, graph $C^*$-algebra
Categories:46L05, 46L80, 22A22

10. CMB 2007 (vol 50 pp. 227)

Kucerovsky, D.; Ng, P. W.
AF-Skeletons and Real Rank Zero Algebras with the Corona Factorization Property
Let $A$ be a stable, separable, real rank zero $C^{*}$-algebra, and suppose that $A$ has an AF-skeleton with only finitely many extreme traces. Then the corona algebra ${\mathcal M}(A)/A$ is purely infinite in the sense of Kirchberg and R\o rdam, which implies that $A$ has the corona factorization property.

Categories:46L80, 46L85, 19K35

11. CMB 2007 (vol 50 pp. 268)

Manuilov, V.; Thomsen, K.
On the Lack of Inverses to $C^*$-Extensions Related to Property T Groups
Using ideas of S. Wassermann on non-exact $C^*$-algebras and property T groups, we show that one of his examples of non-invertible $C^*$-extensions is not semi-invertible. To prove this, we show that a certain element vanishes in the asymptotic tensor product. We also show that a modification of the example gives a $C^*$-extension which is not even invertible up to homotopy.

Keywords:$C^*$-algebra extension, property T group, asymptotic tensor $C^*$-norm, homotopy
Categories:19K33, 46L06, 46L80, 20F99

12. CMB 2005 (vol 48 pp. 607)

Park, Efton
Toeplitz Algebras and Extensions of\\Irrational Rotation Algebras
For a given irrational number $\theta$, we define Toeplitz operators with symbols in the irrational rotation algebra ${\mathcal A}_\theta$, and we show that the $C^*$-algebra $\mathcal T({\mathcal A}_\theta)$ generated by these Toeplitz operators is an extension of ${\mathcal A}_\theta$ by the algebra of compact operators. We then use these extensions to explicitly exhibit generators of the group $KK^1({\mathcal A}_\theta,\mathbb C)$. We also prove an index theorem for $\mathcal T({\mathcal A}_\theta)$ that generalizes the standard index theorem for Toeplitz operators on the circle.

Keywords:Toeplitz operators, irrational rotation algebras, index theory
Categories:47B35, 46L80

13. CMB 2003 (vol 46 pp. 509)

Benson, David J.; Kumjian, Alex; Phillips, N. Christopher
Symmetries of Kirchberg Algebras
Let $G_0$ and $G_1$ be countable abelian groups. Let $\gamma_i$ be an automorphism of $G_i$ of order two. Then there exists a unital Kirchberg algebra $A$ satisfying the Universal Coefficient Theorem and with $[1_A] = 0$ in $K_0 (A)$, and an automorphism $\alpha \in \Aut(A)$ of order two, such that $K_0 (A) \cong G_0$, such that $K_1 (A) \cong G_1$, and such that $\alpha_* \colon K_i (A) \to K_i (A)$ is $\gamma_i$. As a consequence, we prove that every $\mathbb{Z}_2$-graded countable module over the representation ring $R (\mathbb{Z}_2)$ of $\mathbb{Z}_2$ is isomorphic to the equivariant $K$-theory $K^{\mathbb{Z}_2} (A)$ for some action of $\mathbb{Z}_2$ on a unital Kirchberg algebra~$A$. Along the way, we prove that every not necessarily finitely generated $\mathbb{Z} [\mathbb{Z}_2]$-module which is free as a $\mathbb{Z}$-module has a direct sum decomposition with only three kinds of summands, namely $\mathbb{Z} [\mathbb{Z}_2]$ itself and $\mathbb{Z}$ on which the nontrivial element of $\mathbb{Z}_2$ acts either trivially or by multiplication by $-1$.

Categories:20C10, 46L55, 19K99, 19L47, 46L40, 46L80

14. CMB 2003 (vol 46 pp. 441)

Stacey, P. J.
An Inductive Limit Model for the $K$-Theory of the Generator-Interchanging Antiautomorphism of an Irrational Rotation Algebra
Let $A_\theta$ be the universal $C^*$-algebra generated by two unitaries $U$, $V$ satisfying $VU=e^{2\pi i\theta} UV$ and let $\Phi$ be the antiautomorphism of $A_\theta$ interchanging $U$ and $V$. The $K$-theory of $R_\theta=\{a\in A_\theta:\Phi(a)=a^*\}$ is computed. When $\theta$ is irrational, an inductive limit of algebras of the form $M_q(C(\mathbb{T})) \oplus M_{q'} (\mathbb{R}) \oplus M_q(\mathbb{R})$ is constructed which has complexification $A_\theta$ and the same $K$-theory as $R_\theta$.

Categories:46L35, 46L80

15. CMB 2003 (vol 46 pp. 388)

Lin, Huaxin
Tracially Quasidiagonal Extensions
It is known that a unital simple $C^*$-algebra $A$ with tracial topological rank zero has real rank zero. We show in this note that, in general, there are unital $C^*$-algebras with tracial topological rank zero that have real rank other than zero. Let $0\to J\to E\to A\to 0$ be a short exact sequence of $C^*$-algebras. Suppose that $J$ and $A$ have tracial topological rank zero. It is known that $E$ has tracial topological rank zero as a $C^*$-algebra if and only if $E$ is tracially quasidiagonal as an extension. We present an example of a tracially quasidiagonal extension which is not quasidiagonal.

Keywords:tracially quasidiagonal extensions, tracial rank
Categories:46L05, 46L80

16. CMB 2000 (vol 43 pp. 69)

Kaminker, Jerome; Perera, Vicumpriya
Type II Spectral Flow and the Eta Invariant
The relative eta invariant of Atiyah-Patodi-Singer will be shown to be expressible in terms of the notion of Type~I and Type~II spectral flow.

Categories:19K56, 46L80

17. CMB 1999 (vol 42 pp. 274)

Dădărlat, Marius; Eilers, Søren
The Bockstein Map is Necessary
We construct two non-isomorphic nuclear, stably finite, real rank zero $C^\ast$-algebras $E$ and $E'$ for which there is an isomorphism of ordered groups $\Theta\colon \bigoplus_{n \ge 0} K_\bullet(E;\ZZ/n) \to \bigoplus_{n \ge 0} K_\bullet(E';\ZZ/n)$ which is compatible with all the coefficient transformations. The $C^\ast$-algebras $E$ and $E'$ are not isomorphic since there is no $\Theta$ as above which is also compatible with the Bockstein operations. By tensoring with Cuntz's algebra $\OO_\infty$ one obtains a pair of non-isomorphic, real rank zero, purely infinite $C^\ast$-algebras with similar properties.

Keywords:$K$-theory, torsion coefficients, natural transformations, Bockstein maps, $C^\ast$-algebras, real rank zero, purely infinite, classification
Categories:46L35, 46L80, 19K14

18. CMB 1998 (vol 41 pp. 240)

Xia, Jingbo
On certain $K$-groups associated with minimal flows
It is known that the Toeplitz algebra associated with any flow which is both minimal and uniquely ergodic always has a trivial $K_1$-group. We show in this note that if the unique ergodicity is dropped, then such $K_1$-group can be non-trivial. Therefore, in the general setting of minimal flows, even the $K$-theoretical index is not sufficient for the classification of Toeplitz operators which are invertible modulo the commutator ideal.

Categories:46L80, 47B35, 47C15

© Canadian Mathematical Society, 2014 : https://cms.math.ca/