Expand all Collapse all | Results 1 - 7 of 7 |
1. CMB Online first
A short note on the continuous Rokhlin property and the universal coefficient theorem in E-theory Let $G$ be a metrizable compact group, $A$ a separable $\mathrm{C}^*$-algebra
and $\alpha\colon G\to\operatorname{Aut}(A)$ a strongly continuous action.
Provided that $\alpha$ satisfies the continuous Rokhlin property,
we show that the property of satisfying the UCT in $E$-theory
passes from $A$ to the crossed product $\mathrm{C}^*$-algebra $A\rtimes_\alpha
G$ and the fixed point algebra $A^\alpha$. This extends a similar
result by Gardella for $KK$-theory in the case of unital
$\mathrm{C}^*$-algebras,
but with a shorter and less technical proof. For circle actions
on separable, unital $\mathrm{C}^*$-algebras with the continuous Rokhlin
property, we establish a connection between the $E$-theory equivalence
class of $A$ and that of its fixed point algebra $A^\alpha$.
Keywords:Rokhlin property, UCT, KK-theory, E-theory, circle actions Categories:46L55, 19K35 |
2. CMB 2014 (vol 58 pp. 110)
Property T and Amenable Transformation Group $C^*$-algebras It is well known that a discrete group which is both amenable and
has Kazhdan's Property T must be finite. In this note we generalize
the above statement to the case of transformation groups. We show
that if $G$ is a discrete amenable group acting on a compact
Hausdorff space $X$, then the transformation group $C^*$-algebra
$C^*(X, G)$ has Property T if and only if both $X$ and $G$ are finite. Our
approach does not rely on the use of tracial states on $C^*(X, G)$.
Keywords:Property T, $C^*$-algebras, transformation group, amenable Categories:46L55, 46L05 |
3. CMB 2009 (vol 53 pp. 37)
$C^*$-Crossed-Products by an Order-Two Automorphism We describe the representation theory of $C^*$-crossed-products of a unital $C^*$-algebra A by the cyclic group of order~2. We prove that there are two main types of irreducible representations for the crossed-product: those whose restriction to A is irreducible and those who are the sum of two unitarily unequivalent representations of~A. We characterize each class in term of the restriction of the representations to the fixed point $C^*$-subalgebra of~A. We apply our results to compute the K-theory of several crossed-products of the free group on two generators.
Categories:46L55, 46L80 |
4. CMB 2006 (vol 49 pp. 371)
Inner $E_0$-Semigroups on Infinite Factors This paper is concerned with the structure of
inner $E_0$-semigroups. We show that any inner
$E_0$-semigroup acting on an infinite factor
$M$ is completely determined by a continuous
tensor product system of Hilbert spaces in
$M$ and that the product system associated
with an inner $E_0$-semigroup is a complete cocycle conjugacy invariant.
Keywords:von Neumann algebras, semigroups of endomorphisms, product systems, cocycle conjugacy Categories:46L40, 46L55 |
5. CMB 2004 (vol 47 pp. 553)
A Geometric Approach to Voiculescu-Brown Entropy A basic problem in dynamics is to identify systems
with positive entropy, i.e., systems which are ``chaotic.'' While
there is a vast collection of results addressing this issue in
topological dynamics, the phenomenon of positive entropy remains by and
large a mystery within the broader noncommutative domain of $C^*$-algebraic
dynamics. To shed some light on the noncommutative situation we propose
a geometric perspective inspired by work of Glasner and Weiss on
topological entropy.
This is a written version of the author's talk
at the Winter 2002 Meeting of the Canadian Mathematical Society
in Ottawa, Ontario.
Categories:46L55, 37B40 |
6. CMB 2003 (vol 46 pp. 509)
Symmetries of Kirchberg Algebras Let $G_0$ and $G_1$ be countable abelian groups. Let $\gamma_i$ be an
automorphism of $G_i$ of order two. Then there exists a unital
Kirchberg algebra $A$ satisfying the Universal Coefficient Theorem and
with $[1_A] = 0$ in $K_0 (A)$, and an automorphism $\alpha \in
\Aut(A)$ of order two, such that $K_0 (A) \cong G_0$, such that $K_1
(A) \cong G_1$, and such that $\alpha_* \colon K_i (A) \to K_i (A)$ is
$\gamma_i$. As a consequence, we prove that every
$\mathbb{Z}_2$-graded countable module over the representation ring $R
(\mathbb{Z}_2)$ of $\mathbb{Z}_2$ is isomorphic to the equivariant
$K$-theory $K^{\mathbb{Z}_2} (A)$ for some action of $\mathbb{Z}_2$ on
a unital Kirchberg algebra~$A$.
Along the way, we prove that every not necessarily finitely generated
$\mathbb{Z} [\mathbb{Z}_2]$-module which is free as a
$\mathbb{Z}$-module has a direct sum decomposition with only three
kinds of summands, namely $\mathbb{Z} [\mathbb{Z}_2]$ itself and
$\mathbb{Z}$ on which the nontrivial element of $\mathbb{Z}_2$ acts
either trivially or by multiplication by $-1$.
Categories:20C10, 46L55, 19K99, 19L47, 46L40, 46L80 |
7. CMB 2003 (vol 46 pp. 98)
Crossed Products by Semigroups of Endomorphisms and Groups of Partial Automorphisms We consider a class $(A, S, \alpha)$ of dynamical systems,
where $S$ is an Ore semigroup and $\alpha$ is an action such that
each $\alpha_s$ is injective and extendible ({\it i.e.} it extends to a
non-unital endomorphism of the multiplier algebra), and has range an
ideal of $A$. We show that there is a partial action on the fixed-point
algebra under the canonical coaction of the enveloping group $G$ of $S$
constructed in \cite[Proposition~6.1]{LR2}. It turns out that the full
crossed product by this coaction is isomorphic to $A\rtimes_\alpha S$.
If the coaction is moreover normal, then the isomorphism can be extended
to include the reduced crossed product. We look then at invariant ideals
and finally, at examples of systems where our results apply.
Category:46L55 |