Expand all Collapse all | Results 1 - 11 of 11 |
1. CMB 2011 (vol 56 pp. 337)
Certain Properties of $K_0$-monoids Preserved by Tracial Approximation We show that the following $K_0$-monoid properties of $C^*$-algebras
in the class $\Omega$ are inherited by simple unital $C^*$-algebras in
the class $TA\Omega$: (1) weak comparability, (2) strictly
unperforated, (3) strictly cancellative.
Keywords:$C^*$-algebra, tracial approximation, $K_0$-monoid Categories:46L05, 46L80, 46L35 |
2. CMB 2011 (vol 55 pp. 73)
Classification of Inductive Limits of Outer Actions of ${\mathbb R}$ on Approximate Circle Algebras In this paper we present a classification,
up to equivariant isomorphism, of $C^*$-dynamical systems $(A,{\mathbb R},\alpha )$
arising as inductive limits of directed systems
$\{ (A_n,{\mathbb R},\alpha_n),\varphi_{nm}\}$, where each $A_n$
is a finite direct sum of matrix algebras over the continuous
functions on the unit circle, and the $\alpha_n$s are outer actions
generated by rotation of the spectrum.
Keywords:classification, $C^*$-dynamical system Categories:46L57, 46L35 |
3. CMB 2010 (vol 54 pp. 68)
Non-splitting in Kirchberg's Ideal-related $KK$-Theory
A. Bonkat obtained a universal coefficient theorem in the setting of Kirchberg's
ideal-related $KK$-theory in the fundamental case of a
$C^*$-algebra with one
specified ideal. The universal coefficient sequence was shown to split, unnaturally, under certain
conditions. Employing certain $K$-theoretical information derivable
from the given operator algebras using a method introduced here, we shall
demonstrate that Bonkat's UCT does not split in general. Related
methods lead to information on the complexity of the $K$-theory which
must be used to
classify $*$-isomorphisms for purely infinite $C^*$-algebras with
one non-trivial ideal.
Keywords:KK-theory, UCT Category:46L35 |
4. CMB 2008 (vol 51 pp. 545)
$C^{\ast}$-Algebras Associated with Mauldin--Williams Graphs A Mauldin--Williams graph $\mathcal{M}$ is a generalization of an
iterated function system by a directed graph. Its invariant set $K$
plays the role of the self-similar set. We associate a $C^{*}$-algebra
$\mathcal{O}_{\mathcal{M}}(K)$ with a Mauldin--Williams graph $\mathcal{M}$
and the invariant set $K$, laying emphasis on the singular points.
We assume that the underlying graph $G$ has no sinks and no sources.
If $\mathcal{M}$ satisfies the open set condition in $K$, and $G$
is irreducible and is not a cyclic permutation, then the associated
$C^{*}$-algebra $\mathcal{O}_{\mathcal{M}}(K)$ is simple and purely
infinite. We calculate the $K$-groups for some examples including the
inflation rule of the Penrose tilings.
Categories:46L35, 46L08, 46L80, 37B10 |
5. CMB 2006 (vol 49 pp. 213)
On Inductive Limit Type Actions of the Euclidean Motion Group on Stable UHF Algebras An invariant is presented which classifies, up to
equivariant isomorphism, $C^*$-dynamical systems arising as limits from
inductive systems of elementary $C^*$-algebras on which the Euclidean
motion group acts by way of unitary representations that decompose into
finite direct sums of irreducibles.
Keywords:classification, $C^*$-dynamical system Categories:46L57, 46L35 |
6. CMB 2005 (vol 48 pp. 50)
Injectivity of the Connecting Maps in AH Inductive Limit Systems Let $A$ be the inductive limit of a system
$$A_{1}\xrightarrow{\phi_{1,2}}A_{2}
\xrightarrow{\phi_{2,3}} A_{3}\longrightarrow \cd
$$
with $A_n =
\bigoplus_{i=1}^{t_n} P_{n,i}M_{[n,i]}(C(X_{n,i}))P_{n,i}$, where
$~X_{n,i}$ is a finite simplicial complex, and $P_{n,i}$ is a
projection in $M_{[n,i]}(C(X_{n,i}))$. In this paper, we will
prove that $A$ can be written as another inductive limit
$$B_1\xrightarrow{\psi_{1,2}} B_2
\xrightarrow{\psi_{2,3}} B_3\longrightarrow \cd $$
with $B_n =
\bigoplus_{i=1}^{s_n} Q_{n,i}M_{\{n,i\}}(C(Y_{n,i}))Q_{n,i}$,
where $Y_{n,i}$ is a finite simplicial complex, and $Q_{n,i}$ is a
projection in $M_{\{n,i\}}(C(Y_{n,i}))$, with the extra condition
that all the maps $\psi_{n,n+1}$ are \emph{injective}. (The
result is trivial if one allows the spaces $Y_{n,i}$ to be
arbitrary compact metrizable spaces.) This result is important
for the classification of simple AH algebras (see
\cite{G5,G6,EGL}. The special case that the spaces $X_{n,i}$ are
graphs is due to the third named author \cite{Li1}.
Categories:46L05, 46L35, 19K14 |
7. CMB 2003 (vol 46 pp. 441)
An Inductive Limit Model for the $K$-Theory of the Generator-Interchanging Antiautomorphism of an Irrational Rotation Algebra |
An Inductive Limit Model for the $K$-Theory of the Generator-Interchanging Antiautomorphism of an Irrational Rotation Algebra Let $A_\theta$ be the universal $C^*$-algebra generated by two
unitaries $U$, $V$ satisfying $VU=e^{2\pi i\theta} UV$ and let $\Phi$
be the antiautomorphism of $A_\theta$ interchanging $U$ and $V$. The
$K$-theory of $R_\theta=\{a\in A_\theta:\Phi(a)=a^*\}$ is computed. When
$\theta$ is irrational, an inductive limit of algebras of the form
$M_q(C(\mathbb{T})) \oplus M_{q'} (\mathbb{R}) \oplus M_q(\mathbb{R})$
is constructed which has complexification $A_\theta$ and the same
$K$-theory as $R_\theta$.
Categories:46L35, 46L80 |
8. CMB 2003 (vol 46 pp. 164)
Classification of $\AF$ Flows An $\AF$ flow is a one-parameter automorphism group of an $\AF$
$C^*$-algebra $A$ such that there exists an increasing sequence of
invariant finite dimensional sub-$C^*$-algebras whose union is dense in
$A$. In this paper, a classification of $C^*$-dynamical systems of
this form up to equivariant isomorphism is presented. Two pictures
of the actions are given, one in terms of a modified Bratteli
diagram/path-space construction, and one in terms of a modified
$K_0$ functor.
Categories:46L57, 46L35 |
9. CMB 2001 (vol 44 pp. 335)
Inductive Limit Toral Automorphisms of Irrational Rotation Algebras Irrational rotation $C^*$-algebras have an inductive limit
decomposition in terms of matrix algebras over the space of continuous
functions on the circle and this decomposition can be chosen to be
invariant under the flip automorphism. It is shown that the flip is
essentially the only toral automorphism with this property.
Categories:46L40, 46L35 |
10. CMB 2000 (vol 43 pp. 320)
On Classification of Certain $C^\ast$-Algebras We consider \cst-algebras which are inductive limits of finite
direct sums of copies of $ C([0,1]) \otimes \Otwo$. For such
algebras, the lattice of closed two-sided ideals is proved to be
a complete invariant.
Categories:46L05, 46L35 |
11. CMB 1999 (vol 42 pp. 274)
The Bockstein Map is Necessary We construct two non-isomorphic nuclear, stably finite,
real rank zero $C^\ast$-algebras $E$ and $E'$ for which
there is an isomorphism of ordered groups
$\Theta\colon \bigoplus_{n \ge 0} K_\bullet(E;\ZZ/n) \to
\bigoplus_{n \ge 0} K_\bullet(E';\ZZ/n)$ which is compatible
with all the coefficient transformations. The $C^\ast$-algebras
$E$ and $E'$ are not isomorphic since there is no $\Theta$
as above which is also compatible with the Bockstein operations.
By tensoring with Cuntz's algebra $\OO_\infty$ one obtains a pair
of non-isomorphic, real rank zero, purely infinite $C^\ast$-algebras
with similar properties.
Keywords:$K$-theory, torsion coefficients, natural transformations, Bockstein maps, $C^\ast$-algebras, real rank zero, purely infinite, classification Categories:46L35, 46L80, 19K14 |